

AST(RON

Ger de Bruyn ^{1,2} & Ronald Nijboer ¹ (LOFAR calibration PS & PM) Dwingeloo, 19Mar08 + 21Aug08

¹ASTRON, Dwingeloo & ²Kapteyn Institute, Groningen

- CS-1 results (LBA/HBA) and lessons learned
- LOFAR20/34 configuration choice
- Station configuration (see also Ronald's talk)
- Rollout activities and planning
- Main and secondary goals of MS³
- Proposed observational/technical specifications
- Issues underlying the proposed choices
- Issues to be discussed / investigated

Confusion limited CS-1 image at ~ 50 MHz

Deep HBA image: 10' PSF, sub-Jy noise

36 subbands:

MFS from 125 - 175 MHz

24h integration using

20 dipoles +

4 tiles (tracking CasA)

tilebeam ~ 25°

Sun and TauA conjunction on 14+15Jun08

Yatawatta & Brentjens, AJDI, 10Aug08

LOFAR core configuration

Inter tile distance: 0.15m

Navigator control panel & Google earth

Hardware	Observations	Processes	Reports	Alerts	Show TestPanel	Hardware 👱	
				-	• Bullnen		
	-			- H		······ <mark>·······························</mark>	
				X			
1						¢ ///	
1			Co			Processes 👻	
	• Ees						
	Nº.						
	34			and the second			
			Carles I				
The	1	-		îm	age © 2008 Aerodala international Surveys © 2008 Telo Allac	<u>د</u>	•
2008.07.29 12:3	37:43.686				SHM:http://10.230.30.1/shm/data CAME	Locator	
						4	•

LOFAR stations within the Netherlands

LOFAR stations in Europe

Inter-tile distance: 0.15m

Nature development in LOFAR core (Exloo)

Rather soggy in rainy season \Rightarrow station fields raised 60cm

other areas go down by 60cm !

Raising and lowering land in the core (~1 Aug08)

Also people in Garching have been busy...

LOFAR frequency selection aspects

Two 12-bit sampling modes: 160 or 200 MHz clock Frequency filtering done in two (PPF) stages:

- at station \Rightarrow 512 subbands (of 156 or 195 kHz)
- at CEP (BG/P) \Rightarrow 256 channels for ~ 200 subbands

~ 50,000 channels of 0.6 - 0.8 kHz !!

(NB: ~ 1 kHz is required for both RFI excision and very wide-field imaging)

Figure 10 Selection of Nyquist zones is used to select the observed band in the station.

The A-team magnified

~5' PSF

CasA CygA ~ 10 Jy peakflux

~ 1Jy peakflux

VirA

TauA

Why do a MS³ ?

LOFAR20 needs a *Global Sky Model (GSM*) for the northern sky $(\sim 21,000 \square^{\circ})$ in an early phase and which:

- has a proper flux scale
- has validated (initial) source parameters (spectrum, structure, ..)
- is astrometrically correct to better than 0.5"
- interfaces efficiently to calibration & imaging pipeline (LSM)

Carrying out MS³ will also

- create a *joint focus for activities*
- allows integration of scheduling, monitoring, processing, calibration & imaging
- provide realistic estimates for storage and processing resource needs
- provide the conditions for a rehearsal of full LOFAR operations

How to do MS³ : an initial proposal

Observations:

- 20 NL stations (13+7) => 3-9 snapshots for decent uv-coverage
- limit to two (broad?) frequency ranges: 60 MHz & 150 MHz
- complete in < 3 months (30% efficiency) & 'real-time' processing
- 2 beams of ~15 MHz (+ CasA beam, ~1 MHz)

Products:

- ~ 1 million sources, of which ~ 100,000 will be high S/N (I.e. ~ 5 / $\Box^{\rm o}$)
- spectral indices for the ~ 100,000 sources seen in both bands
- structural information: ~20-60" resolution, i.e. comparable/better than VLSS/WENSS/NVSS (= initial reference catalogue)
- fully tested pipelines

How to do MS³ ?

remaining observational issues:

- use of VERY wide bandwidth synthesis (BWS): calibration/deconvolution?
- 16 8 4 bit transport options:

more beams => faster => better uv-coverage BUT lower SNR for calibration

- polarization (RM-synthesis) processing in both HBA and LBA (?)
- participation of European stations: 3 8 ? => afternoon discussion

Should we try to include simultaneously other KSP-specific commissioning issues ? EoR/SRV 'deep' fields + TRA + UHECR + MagKSP + Solar System

additional products:

- arcsecond images of ~ 4,000 (?) European-LOFAR calibrator sources
- lists of polarized calibration sources for ionospheric RM monitoring

Adopted LOFAR20/34 configurations

Some assumptions and their consequences

- < 3 months total (e.g. April-June, May-July, June-August) combined with 24h RA coverage ⇒ mostly daytime observations !
 => vulnerable to Solar flares, scintillation (IPS), ionospheric TID waves
- required uv-coverage and (relative) sensitivity
 - \Rightarrow at least 3 x 5m (HBA) and 9 x 5m (LBA)

NB: if multiple snapshot AND multi-beam => considerable complexity in processing !

- FOV for ~ 30m stations (core/remote NL, space tapered) \Rightarrow grid of 2.5° (150 MHz) and 6° (60 MHz)
- Only one longish baseline (28 km) => imaging with \sim 10 km tapered array

Some numbers

The numbers below are based on 9 times 5 minute observations in the LBA and 3 times 5 minute observations in the HBA using 1 beam of 32 MHz (and 1 calibration beam of a single subband). In order to improve the UV – coverage and PSF we might trade BW for beams. In this way we can observe more fields at the same time and, hence, integrate longer on the same field. This goes at the expense of a smaller BW, but the sensitivity and total data size on that field remain the same.

	60 MHz	150 MHz	
Observing time per FoV	9 times 5 minutes	3 times 5 minutes	
FoV	121 deg^2	19.4 deg^2	
FWHM	12.4 deg	4.97 deg	
PSF resolution (10 km)	82.5 arcsec	33.0 arcsec	
Correlator time resolution	i s	1 s	
Correlator freq resolution	0.76 kHz	0.76 kHz	
Uv data size	760 Gbyte	680 Gbyte	
Post DP^3 time res.	5 s	5 s	
Post DP^3 freq res.	21.3 kHz	42.6 kHz	
Post DP ³ uv data size	~ 5.43 Gbyte	~ 2.43 Gbyte	
# channels per image cube	Tbd	Tbd	
# pixels per image plane	Tbd	Tbd	
Total image size	Tbd	Tbd	

Table 1: Specifications per pointing / FoV

We have 8 beams (assuming 16-bit signals)

Note that one beam (1-2 MHz) always on CasA to get clock (+ ionosphere) but only in core (CasA resolved at ~ 2 km - 5 km). What to do for NL clocks ?

Broadband (120 -1 80 MHz) data might allow separation of clock ($\phi \propto \nu$) and ionosphere ($\phi \propto \nu^{-1}$) delays.

Choice of observing mode depends on efficiency:

- 60% 1 beam x 30 MHz => 13 weeks = 3 months
- 30% 2 beams x 15 MHz => 13 weeks
- 30% 4 beams x 7.5 MHz => 7 weeks

(Assuming last mode applies we could add more snapshots in HBA)

Important assumption: still 16-bit transport (\Rightarrow 2 x 15 MHz beams)

If the 16 => 8 => 4 bit option is available => more beams possible , better uvcoverage but reduced SNR !

Calibratibility

In order to say something about the calibratibility of LOFAR20 the number of sources visible in the FoV in 10 s of data is computed. If we want to trade BW for beams in order to improve the UV – coverage and PSF, this will reduce the available BW for the calibration.

	100 σ; 60 MHz	100 σ; 150 MHz	30 σ; 60 MHz	30 σ; 150 MHz
1 beam; 30 MHz	17	44	94	140
3 beams; 10 MHz	6.9	24	45	84
5 beams; 6 MHz	4.4	17	31	66
7 beams; 4.29 MHz	3.3	14	24	56

sources in FoV in 10 s integration time.

It is currently expected that at 150 MHz there will be enough sources (> 10) in the FoV per 10 s for LOFAR20 to be calibratable. At 60 MHz the situation is much harder, especially in the daytime. Peeling large number of sources and using the phase information to model an ionospheric screen will have to be high on the agenda in the next 6 months.

Elevation, uv-coverage and projection issues

Ideally we would like to have snapshots at many widely separated hour angles,

BUT

for declinations below about +20° the sensitivity losses for large hour angles will outweigh the uv-coverage improvements

 \Rightarrow for low declination we aim for snapshots at -2h, 0, +2h

LOFAR20/34

HBA uv-coverages

LOFAR20/34

HBA uv-coverages

LOFAR20/34

+90°

monochromatic

12h

The deepest 150 MHz WSRT image

Bernardi et al, in prep)