
Parameter Database

Ger van Diepen
10 January 2011

Introduction
BBS uses distributed parameter databases to store the calibration parameters, both
instrumental and sky parameters. The ParmDB package takes care of maintaining the
parameter databases. It can deal with scalar parameters as well as coefficients of parameter
functions (funklets) like polynomials.
The main ParmDB interface is tailored towards BBS and written in C++. An interface in
python is available for easy and flexible access to parameters, mainly for plotting purposes.
The underlying storage system is formed by the Casacore Tables system as it seems better
suited for distributed processing. However, the interface is such that it should be easy to use
another storage system like an RDBMS.
The emphasis of ParmDB is on efficiency in storage space and retrieval. Space efficiency is
achieved by combining scalar values of an entire solve domain in a single record. Retrieval
efficiency is achieved by using an index on parameter name.

Distributed Processing
BBS operates in a distributed way on a distributed MeasurementSet, hence the parameter
databases are distributed too. The parameter tables are partitioned in the same way as the
MeasurementSet, thus per subband. It means that each subband has its own parameter
database tables. A so-called global VDS file describes all these parts to make them globally
known.

BBS parameters can be solved per subband or across a group of subbands. In the first case it
is clear that each database part has its own unique frequency domains for these parameters. In
the latter case information is duplicated in all parts combined in a solution, so a BBS process
can always find parameter information in its local database.

Parameter properties

- A parameter name can consist of multiple parts separated by colons. For example,
gain:xx:CS001

 BBS defines the names of all parameters in a standard way.
- A parameter can have multiple values, each one valid for a given frequency/time

domain. The value can be a scalar value that is constant for that domain. It can,
however, also be a 2-dimensional funklet in frequency and time, for example a
polynomial. In that case the value is a 2-dimensional array holding the coefficients of
the funklet. The funklet and its coefficients can be scaled to the domain for better
numerical behaviour.

- Optionally errors can be attached to the values telling how well a solve behaved.
- It is possible to define a funklet mask telling which funklet coefficients are to be used.

By default the higher order coefficients, thus coefficients [i,j] where
(i+j)>=max(nx,ny), are not used.

- If a parameter is defined as a funklet, the grade of the funklet must be the same for all
domains of that parameter.

- Once a parameter has been solved for, it can be solved again but only on the same
solve grid.

- Because BBS uses numerical differentiation, each parameter has a perturbation value
that can be used in a relative or absolute way. Relative means that the absolute
perturbation value is the perturbation times the parameter coefficient.
If a solve for multiple domains is done, the absolute perturbation is calculated from
the first domain to achieve that the same perturbation is used for the entire solve.

- Default parameter values and attributes are available for parameters that have not
been solved yet. In that case the parameter is looked up in the table with default
values. If not found, the last part of the name is removed and looked up again. In that
way a single default for, say, gain can serve as the default for all parameters starting
with gain:.

Parameter Database Tables
The database consists of three tables:

1. The main table contains the values per parameter per domain.
The main table also contains some keywords, notably DefaultFreqStep and
DefaultTimeStep defining the default step sizes used by the python interface.
These keywords are initialized with the MeasurementSet resolution.

2. The Name table maps a parameter name to a unique name ID. Furthermore it defines
the parameter funklet type and some other attributes not dependent on domain.
It is defined as subtable NAMES of the main table.

3. The DefaultValues table defines the default value and some other default attributes of
a parameter.
It is defined as subtable DEFAULTVALUES of the main table.

Main Table
Column Data Type Description
NAMEID int Parameter name ID (rownr in the Name table).
STARTX double Domain start value for the X axis (frequency).
ENDX double Domain end value for the X axis (frequency).
STARTY double Domain start for the Y axis (time).
ENDY double Domain end for the Y axis (time).
INTERVALSX double[2,nx] If given and not empty, center and width of each point on

the X axis. Otherwise the axis is regularly spaced.
Only used if VALUES contains scalar values.

INTERVALSY double[2,ny] Same for Y axis.
VALUES double[nx,ny] Coefficients if parameter is a funklet (with shape [nx,ny]).

Otherwise scalar values of nx*ny points in domain.
ERRORS double[nx,ny] If given, the errors attached to VALUES.

NAMES subtable
Column Data Type Description
NAME string Parameter name.
FUNKLETTYPE int Defined in ParmDB/ParmValue.h
PERTURBATION double Perturbation to use for each coefficient when

calculating derivatives numerically.
PERT_REL double True = perturbation is relative, otherwise absolute.
SOLVABLE bool[nx,ny] Optional mask telling which funklet coefficients to use

when solving the parameter.
NX int Number of funklet coefficients in X direction.
NY int Number of funklet coefficients in Y direction.
The name ID (used in the main table) is defined as the row number in the Name table. It
means that parameters cannot be deleted from the Name table.

DEFAULTVALUES subtable
Column Data Type Description
NAME string Parameter name or part of it.
FUNKLETTYPE int Defined in ParmDB/ParmValue.h
PERTURBATION double Perturbation to use for each coefficient when

calculating derivatives numerically.
PERT_REL double True = perturbation is relative, otherwise absolute.
SOLVABLE bool[nx,ny] Optional mask telling which funklet coefficients to use

when solving the parameter.
DOMAIN double[4] Optional domain for funklet (as stx, endx, sty, endy).
VALUES double[nx,ny] Coefficients if parameter is a funklet (with shape

[nx,ny]).
For a scalar parameter nx=ny=1.

Source Parameter Table
Source parameters are stored in the parameter database tables described above. Their names
consist of two parts. The first part is the source name, while the second part gives the source
parameter, for example Ra. The source type determines which source parameters are
available. For example, a point source has fewer parameters than an extended source.
Apart from sources with a fixed position, the source type can also define moving objects like
the sun.
The currently used source parameter names are:

- Ra, Dec J2000 position in radians
- I, Q, U, V Fluxes in Jy
- SpectralIndex:i i-th coefficient of spectral index log polynomial
- Orientation)
- MajorAxis) Gaussian source parameters
- MinorAxis)
- PolarizedFraction)
- PolarizationAngle) Rotation Measure parameters
- RotationMeasure)

Other parameters can be defined as needed when new source types are added.

Sources can be grouped in patches, so they can be handled jointly by BBS. Often a patch will
contain only one source.

Two tables are added to the parameter database to describe source specific information in a
way that the sky parameter database can be used as the Local Sky Model.

1. The Source table defines a source and the patch it belongs to.
It is defined as subtable SOURCES of the main parameter database table.

2. The Patch table describes a patch.
It is defined as subtable PATCHES of the Source table.

SOURCES subtable
Column Data Type Description
SOURCENAME string Source name.
PATCHID uint Id of the patch containing the source.

(rownr in Patch table).
SOURCETYPE int Defined in ParmDB/SourceInfo.h
REFTYPE string Frame reference type (J2000, etc.)
SPINX_NTERMS int Degree of spectral index (<0 means no spectral index)
SPINX_REFFREQ double Reference frequency for spectral index
USE_ROTMEAS bool true = use rotation measure for Q,U
SHAPELET_ISCALE double Shapelet scale for Stokes I
SHAPELET_QSCALE double Shapelet scale for Stokes Q
SHAPELET_USCALE double Shapelet scale for Stokes U
SHAPELET_VSCALE double Shapelet scale for Stokes V
SHAPELET_ICOEFF double[n,n] Shapelet coefficients for Stokes I
SHAPELET_QCOEFF double[n,n] Shapelet coefficients for Stokes Q
SHAPELET_UCOEFF double[n,n] Shapelet coefficients for Stokes U
SHAPELET_VCOEFF double[n,n] Shapelet coefficients for Stokes V

PATCHES subtable
Column Data Type Description
PATCHNAME string Patch name.
CATEGORY int 1, 2, or 3 for Cat-1, Cat-2, or Cat-3 sources.
APPARENT_
BRIGHTNESS

double Apparent brightness of patch.
Used for peeling in descending order of brightness.

RA double J2000 RA of patch center.
DEC double J2000 DEC of patch center.

The patch ID (used in the Source table) is defined as the row number in the Patch table. It
means that patches cannot be deleted from the Patch table.

Parameter Interface
The CEP/ParmDB package contains C++ classes and functions to access the parameter
databases. A brief description of the main classes follows; more detailed information is given
in the appendix and in the classes themselves.

The following classes are designed for use by BBS:

1. ParmDB opens a parameter database. It is a wrapper for classes that implement the
database in a storage specific way. Currently only ParmDBCasa is implemented.

2. ParmSet contains the names of the parameters used in a BBS step.
3. ParmCache contains the values and attributes of the parameters in ParmSet for a

given frequency/time work domain.
4. Parm can be used to get and set parameter coefficients and errors, to define a solve

domain and grid, and to evaluate a parameter for a given predict grid.
It is important to note that the solve domain can be smaller than the work domain
defined in ParmCache, but not larger. When extending the solve domain, the values
of the previous solve domain will be used as start values instead of the default values
from the DefaultValues table.

These classes give local access to a parameter database, so they are typically used in each
distributed BBSKernel process.
Furthermore some helper classes defining domains and grids are used. These are Box, Axis,
and Grid.

The ParmFacade class is meant for inspection purposes and offers readonly access to a
parameter database. Unlike the classes mentioned above, it can also handle a distributed
parameter database when given the name of the global VDS file describing the distributed
parameter database. In that case it starts distributed processes (using startdistproc) that
access each database part locally and combines the data from the distributed processes.
Usually ParmFacade will not be used directly, but through its python interface parmdb.
Values are returned as numpy arrays that can be plotted easily using, say, matplotlib.
The distributed aspect of the system is fully hidden from the user.
The python interface is implemented in package CEP/pyparmdb.

The SourceDB class is the interface to the source parameter database. It is effectively a
wrapper around the ParmDB class. It adds functionality to find patches and sources that can
be used by BBS to do peeling and to know the types of sources.

Several programs and scripts exist to create, fill, or inspect a parameter database.

1. parmdb can be used to create or open a local parameter database, add parameters,
values, and default values, update or delete them, retrieve them. It is a command line
tool, so will not be used very often.

2. makesourcedb can be used to create or open a local source parameter database and
append sources and patches to it using an ASCII input file. The format of the input
file can be described by means of a format line making it possible to handle many
different input formats.

3. showsourcedb can be used to view the contents of a source data base.
4. setupparmdb and setupparmdb-part create a distributed parameter database.

A local database can be used as a template that will be copied to all parts. If no
template database is given, a default one will be used.
A global VDS file is created describing all database parts. The global VDS file of a
MeasurementSet is used as input to know where all parts have to reside.

5. setupsourcedb and setupsourcedb-part do the same for the source
parameter database. They use makesourcedb to fill the database parts from an
ASCII input file.

6. startparmdbdistr, parmdbremote-scr, and parmdbremote are used by
class ParmFacadeDistr to handle a distributed parameter database.

Appendix A Python Interface parmdb

parmdb (dbname)

opens the given database. The database can be a local one given by the name of the
main table. It can also be a distributed one given by the name of its global VDS file.
In that case parmdbremote processes will be started on nodes having access to the
distributed database parts. The processes will be ended when closing the database.
For example:

 import lofar.parmdb
 pdb = parmdb(dbname) # open

 pdb = 0 # close

getRange (parmnamepattern="")

returns the domain range of the matching parameter names (default all names) as
[startfreq, endfreq, starttime, endtime].

The parmnamepattern can be a pattern like wildcarded file names used in a shell.

getNames (parmnamepattern="")
 returns the list of matching parameter names (default is all names).

getValues (parmnamepattern,
 sfreq, efreq, freqstep, stime, etime, timestep,

 asStartEnd=true)
calculates the values for the given parameters on the regular grid defined by
frequency and time ranges and steps. A range can be given as start/end (is default) or
center/width. A step size 0 means that the default held in the parameter database is
used. This is usually the frequency and time resolution in the MeasurementSet.
The values are returned as a dict of parameter names to subdicts. Each subdict
contains the fields values, freqs, times, freqwidths, and timewidths. Values is a 2D
numpy array containing the parameter value for each grid point. The other fields
define the grid axes.
Note that numpy arrays are in C-order, thus have shape [nt,nf].

getValues(parmnamepattern, sfreq=-1e30, efreq=1e30,
 stime=-1e30, etime=1e30,
 asStartEnd=True)
 as above using the default step sizes.

getValuesGrid (parmnamepattern, sfreq=-1e30, efreq=1e30,
 stime=-1e30, etime=1e30,
 asStartEnd=True)

as above using the grid as defined in the parameter database. Such a grid is only
defined for scalar parameters, so for funklets the default step size is used.

getCoeff (parmnamepattern, sfreq=-1e30, efreq=1e30,
 stime=-1e30, etime=1e30,
 asStartEnd=True)

returns the parameter coefficients and errors in a dict as above. Each subdict also
contains the field errors. Undefined errors are set to -1.
For scalar parameter values the result is effectively the same as for getValuesGrid.
For funklets the values and errors arrays are 4D arrays with shape [nt,nf,nct,ncf].
[nt,nf] represent the grid and [nct,ncf] the funklet coefficients.

Appendix B Example BBS usage

This example is very simple. It uses a few parameters and a solve domain that is as large as
the work domain. Yet it shows the basic steps that have to be taken.
Note that the parameters can be scalar or funklet; the code does not need to know.

#include <ParmDB/ParmDB.h>
#include <ParmDB/ParmSet.h>
#include <ParmDB/ParmCache.h>
#include <ParmDB/Parm.h>

// Open the instrument and sky ParmDB.
ParmDB skyPdb (ParmDBMeta(“sky.pdb”));
ParmDB instrPdb (ParmDBMeta(“instr.pdb”));

// Tell which parameters we are interested in.
ParmSet parmSet;
parmSet.add (skyPdb, “src1:RA”);
parmSet.add (skyPdb, “src1:DEC”);
parmSet.add (instrPdb, “gain:st1”);
parmSet.add (instrPdb, “gain:st2”);

// Create the ParmCache and the various Parm objects.
ParmCache parmCache(parmSet);
Parm ra1 (parmCache, “src1:RA”);
Parm dec1 (parmCache, “src1:DEC”);
Parm gain1(parmCache, “gain:st1”);
Parm gain2(parmCache, “gain:st2”);

// Loop over the work domains.
while (Box domain = nextDomain()) {
 // Set the domain for the cache object.
 parmCache.reset (domain);

 // The gains will be solved, so set their solve domains
 // and get their initial coefficients.
 Grid solveGrid (vector<Box>(1, domain));
 gain1.setSolveGrid (solveGrid);
 gain2.setSolveGrid (solveGrid);
 vector<double> coeffGain1 = gain1.getCoeff (Location(0,0));
 vector<double> coeffGain2 = gain2.getCoeff (Location(0,0));

 // Form the predict grid (10x10 elements).
 Axis::ShPtr ax1(new RegularAxis
 (domain.lowerX(), domain.upperX(), 10, true);
 Axis::ShPtr ax2(new RegularAxis
 (domain.lowerY(), domain.upperY(), 10, true);
 Grid predictGrid (ax1, ax2);

 // Get the parameter values on the predict grid.
 // Also calculate perturbed values for the solvable parms.
 vector<Array<double> > resra, resdec, resgain1, resgain2;
 ra1.getResult (resra, predictGrid, false);

 dec1.getResult (resdec, predictGrid, false);
 gain1.getResult (resgain1, predictGrid, true);
 gain2.getResult (resgain2, predictGrid, true);

 // Get the perturbations used.
 vector<double> pertgain1 = gain1.getPerturbations();
 vector<double> pertgain2 = gain2.getPerturbations();

 // Find a new solution for gain1 and gain2 in some way.
 vector<double> solution = findSolution
 (coeffGain1, coeffGain2, pertGain1, pertGain2,
 resra, resdec, resgain1, resgain2);

 // Set the newly found coefficients for gain1 and gain2.
 const double* solPtr = &(solution[0]);
 gain1.setCoeff (Location(0,0), solPtr, coeffGain1.size());
 solPtr += coeffGain1.size();
 gain2.setCoeff (Location(0,0), solPtr, coeffGain2.size());
}

Appendix C Class Diagrams

ParmDB/SourceDB class diagram

ParmFacade class diagram

Parm class diagram

