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1 Introduction

According to the overall LOFAR project planning, additional stations will become available at
Q1 2009. Furthermore, the default integration time will be brought down from 30 seconds to 1
second. As a result, the amount of data coming in from the correlator will increase by a factor of
∼140 – 176.

If we want to stand a chance to cope with this amount of data, we have to start identifying per-
formance bottlenecks. Unfortunately, the details of a realistic calibration strategy for LOFAR are
currently unknown and part of the functionality we know will be needed has not been imple-
mented yet.

To at least get some idea of where we stand, we derived the time complexity of the key algo-
rithms that are used for the calibration of CS1 observations. Subsequently, we tried to test if the
theory correctly predicts how the run time of the current implementation scales with the size
of the input. Finally, we estimated the time that would be needed to perform the calibration
strategy currently used to calibrate CS1 observations for an observation done with the Q1 2009
configuration.

This report is structured as follows: Section 2 lists some characteristic numbers and sizes at Q1
2009 and Q4 2009. In section 3, we derive the time complexity of the key algorithms used in the
current implementation. Section 4 presents the results of a number of performance tests and tries
to link these results to the theory derived in section 3. Section 5 concludes this report.

2 Characteristic numbers and sizes

In this section we compute a set of characteristic numbers and sizes for the LOFAR configuration
after completion of the next roll-out phase in Q1 2009 and for the proposed configuration at Q4
2009.

At Q1 2009 there will be 13 core stations and 7 remote stations within The Netherlands. This will
increase to 18-25 core stations and 18-25 remote stations at Q4 2009. An attempt will be made to
get funding for additional stations within The Netherlands, so the final number may be higher
than that mentioned here. At the moment, there is one international station up and running
(Effelsberg). At Q1 2009, 1-5 international station are foreseen, which may increase to 1-10 by Q4
2009.

Table 1 lists the number of stations and some other characteristics for each configuration. While
interpreting the numbers, keep in mind that each core station consists of one LBA and two HBA
stations.
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!!FIXME!! ∆ f is not accurate, i.e. 32 MHz/No. of channels does not yield the listed
value exactly. The question is: should we trust 32 MHz/No. of channels or the value
for ∆ f ?

Phase LBA HBA ∆t ∆ f (KHz) Channels Sub-bands
Q1 2009 20 + 1 – 5 33 + 1 – 5 1 s 0.78 / 0.62 41984 / 52480 164 / 205
Q4 2009 36 – 50 + 1 – 10 54 – 75 + 1 – 10 1 s 0.78 / 0.62 41984 / 52480 164 / 205

Table 1: Overview of the number of stations and other characteristics of each configuration. Keep
in mind that one core station consists of one LBA and two HBA stations.

Table 2 lists the total observation size for several different durations at the maximal temporal
resolution. The table is provided to give an impression of the total amount of data that needs to
be processed and/or stored.

Phase Duration Measurement size (LBA) Measurement size (HBA)
Q1 2009 1 h 0.92 - 1.32 TB 3.08 - 3.87 TB

4 h 3.70 - 5.28 TB 12.34 - 15.46 TB
8 h 7.39 - 10.56 TB 24.68 - 30.92 TB

Q4 2009 1 h 2.93 - 7.79 TB 8.17 - 19.63 TB
4 h 11.72 - 31.14 TB 32.66 - 78.52 TB
8 h 23.44 - 62.29 TB 65.32 - 157.04 TB

Table 2: Size of a single measurement for various durations. The sizes listed in this table are based
on the raw cross correlation data only. Auto correlations, flags, and meta data have not been taken
into account.

A number of interest is the size in bytes of a single time slot. At the maximal temporal resolution
(1 second), it is equivalent to the total amount of data produced by OLAP per second. It is also the
amount of data that the calibration software must process per second if calibration is required to
run in real time. It can be computed as follows:

timeslot size = baselines× channels× polarizations× 1 complex float (8 bytes)

Table 3 lists the sizes for each configuration. It also lists the size of a single time slot per sub-band,
which is equivalent to the amount of data generated per compute node per second if we assume
each sub-band is mapped to a separate compute node. This mapping will probably be too coarse
for the final configuration.

Phase Time slot (LBA) Per sub-band Time slot (HBA) Per sub-band
Q1 2009 269.06 – 384.38 MB 1.64 – 2.34 MB 898.48 MB – 1.10 GB 4.38 – 5.49 MB
Q4 2009 853.31 MB – 2.21 GB 5.20 – 13.83 MB 2.32 GB – 5.58 GB 11.60 – 27.89 MB

Table 3: Amount of data contained in a single time slot in total and per sub-band.

Note that the amount of data per compute node per second approaches the speed of a single disk
for the final HBA configuration. In other words, it may already become challenging to read and
write a single time slot worth of data within a 1 second time limit. Of course, there are ways in
which this problem can be alleviated. Using multiple disks per compute node would increase
disk I/O speed. Distributing each sub-band over multiple compute nodes would decrease the
amount of data that needs to be processed per compute node per second. Alternatively, it may be
possible to move the processing that needs to be done on the full resolution data to the BlueGene.
In that case, we would only have to deal with integrated data on the offline cluster. This would
decrease the amount of data by a factor ~30.
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Assuming an observation is distributed in frequency, another number of interest is the maximal
amount of data in time that can be loaded into main memory per sub-band. This number de-
termines the maximal time scale at which the model can be fitted to the observed visibilities.
Of course, larger time scales are possible but would require reading data multiple times for each
iteration of the fitting procedure. This is currently believed to be impractical. Table 4 lists the max-
imal domain size in time at the maximal temporal resolution assuming 2 GB of main memory per
sub-band.

Phase Max. domain size (LBA) Max. domain size (HBA)
Q1 2009 20.80 - 14.55 min 7.78 - 6.20 min
Q4 2009 6.55 - 2.47 min 2.93 - 1.22 min

Table 4: Maximal domain size in time assuming 2 GB of main memory per sub-band (scales
linearly with the amount of main memory).

3 Time complexity of core operations

In this section we will derive expressions for the (asymptotic) time complexity of each core op-
eration as a function of several external variables, e.g. number of stations, integration time, and
model complexity. The notion of core operation is used to indicate an algorithm or set of algorithms
that perform(s) a specific task withtin BBS, e.g. reading data from disk or iteratively solving for
the value of a set of model parameters. They are a reflection of the way a user might divide
his/her data reduction into separate tasks. The word core should therefore be interpreted from
the user’s point of view. From a developer’s perspective, a core operation can often be subdi-
vided into smaller tasks.

The goal of this section is to clearify how the total amount of work (and therefore ultimately the
total run time) changes with certain external variables. For instance, what happens to the total
amount of work if we double the number of stations? Or if we decrease the integration time by
a factor of 30? Or if we triple the number of sources in the sky model? We focus on the change
in the total amount of work as a function of the number of stations and the integration time,
because these characteristics will change due to the hardware roll-out in the course of 2008 and
2009 and the numbers are more or less known. It is expected that the reduction strategy and the
sky/instrument models will become increasingly complex in the near future. This will have a
significant impact on the total amount of work as well. However, there are still many unknowns
in this area which make it difficult to draw any meaningful conclusions.

In the following we will derive the time complexity for a single threaded machine. We will not
consider distributed computation and the communication overhead this will incur.

3.1 Input size

The number of visibilities nv is proportional to the number of time slots nt, channels n f , polar-
izations np, and baselines nb.

nv = nb baselines× n f channels× nt time slots× np polarizations

The number of baselines expressed in terms of the number of stations ns is given by:

nb =

{ 1
2 × ns × (ns − 1) cross correlations
1
2 × ns × (ns + 1) all correlations
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Thus, the number of baselines is proportional to the square of the number of stations.

nb ∼ O(n2
s )

3.2 Disk I/O

The majority of data read or written consists of visibility data and flags. Therefore, the time it
takes to read or write data from disk is expected to be proportional to the number of visibilities.

tdisk ∼ O(nv)

3.3 PREDICT, SUBTRACT, CORRECT

The PREDICT operation evaluates the model of each interferometer (baseline), which is repre-
sented internally as an expression tree (actually, a directed acyclic graph). The model expression is
some form of the measurement equation. The result of the PREDICT operation is a set of simulated
visibilities for each baseline. The SUBTRACT operation is an extension of the PREDICT operation.
The simulated visibilities are subtracted from the observed visibilities to yield residual visibilities.
The CORRECT operation is a variant of the PREDICT operation. It takes a set of visibilities as input
and corrects these visibilities for instrumental UV-plane effects. Like the PREDICT operation, it
involves the evaluation of an expression tree for each baseline. Generally, the expression tree is
less complex (i.e. contains less nodes) than the expression trees used in the PREDICT operation.
All three operations have the same asymptotic time complexity. Therefore, we can consider only
the PREDICT operation without losing generality.

Given a grid of sample locations in frequency and time, a number of stations, and a number
of polarizations, a simulated visibility needs to be computed for every combination of baseline,
sample location, and polarization. An important property of the models that are currently used is
that each visibility can be computed independently. This implies that the number of steps required
to compute a single visibility does not depend on the number of channels, time slots, baselines,
or polarizations, but is constant. Therefore, the number of steps required to execute the PREDICT
operation is proportional to the number of visibilities.

tpredict ∼ O(nv)

Deriving a bound on tpredict as a function of model complexity is harder. The number of steps
required to evaluate a single node in the expression tree depends on the type of processing it
performs. The result of some nodes is constant. The result of other nodes depend on time (e.g.
UVW coordinates in meters), or on frequency (e.g. bandpass). The result of still other nodes
depend on both time and frequency (e.g. DFT of a point source). In general, the result of a node
can depend on any subset of the axes frequency, time, and polarization. Hence, an upper bound
on the processing time of a single node is given by:

tnode ∼ O(n f × nt × np)

Assuming every node with more than one parent caches its result, each node will only be eval-
uated once. Let N denote the number of nodes in the expression tree for a single baseline. For
simplicity, we will ignore the fact that the result of some nodes can be shared by multiple base-
lines. An upper bound on the number of steps required to evaluate the expression tree for every
baseline is then given by:
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tpredict ∼ O(nb × N × tnode)

∼ O(nb × N ×O(n f × nt × np))

∼ O(N × nv)

With caching, tpredict is proportional to the total number of nodes in the model for a given number
of visibilities. Obviously, this upper bound need not be very tight.

Suppose the result of a node A is needed by n other nodes. Without caching, A has to be evalu-
ated n times. Thus, without caching, the way the nodes are interconnected in the expression tree
becomes important. In the worst case, evaluating a tree with N nodes can take O(N2) node eval-
uations. However, in realistic trees, each node is connected to a relatively small number of other
nodes. Let c be the maximum number of inputs of any node. Usually, c will be a small constant
independent of N. In this case evaluating a tree with N nodes will take at most O(c×N) ∼ O(N)
evaluations. Using a cache will most likely speed up the computation, but it will not change the
asymptotic time complexity.

3.4 SOLVE

During calibration, an often recurring task is fitting a set of model parameters to the observed
visibilities. For the calibration of LOFAR an implementation of the Levenberg–Marquardt algo-
rithm is used for this task. This is an iterative algorithm that involves computing the solution of
a linear least squares problem each iteration. It requires both an evaluation of the model given a
set of model parameters, as well as the first order partial derivatives of the model with respect to
the unknowns (i.e. model parameters that are to be fitted).

In general, model parameters are bound to a particular station and/or to a particular direction
on the sky. The total number of parameters depends on the number of stations, the number of
(discrete) directions, and the complexity of the model. The calibration strategy dictates in which
order the parameters should be fitted, and which parameters should be fitted simultaneously.
During the SOLVE operation, the total data domain is partitioned into a specified number of
smaller solve domains. Each solve domain is treated as an individual fitting problem.

One iteration of the SOLVE operation consists of the following three sub-operations. To derive
the time complexity of the SOLVE operation as a whole, we will consider each sub-operation
separately.

1. EVALUATE MODEL

Compute visibilities by evaluating the model given the current values of the model pa-
rameters. Also, compute perturbed visibilities for each unknown. Perturbed visibilities are
the result of evaluating the model after adding a small constant to the value of one of the
unknowns. The perturbed visibilities for an unknown are used to approximate the partial
derivative of the model with respect to that unknown using forward differences.

2. CONSTRUCT EQUATIONS

Construct a set of linear equations using the computed visibilities, perturbed visibilities,
and the observed visibilities. The set of linear equations represents the linearization of the
model around the current values of the unknowns. The set is usually overdetermined, i.e.
the number of observed visibilities is larger than the number of unknowns.

3. COMPUTE SOLUTION

Solve the set of linear equations and update the value of the unknowns.
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To simplify the analysis of the EVALUATE MODEL sub-operation, we will first consider only the
amount of work involved in processing a single baseline for a single solve domain. We assume all the
data in the solve domain is locally available to the compute node. Suppose the total data domain
is partitioned into N solve domains of equal size. Then the number of visibilities that need to be
computed for a single baseline for a single solve domain satisfies:

n′v = nv
nb×N

Also, we need to compute perturbed visibilities for each unknown. What is the maximal number
of unknowns per baseline? Parameters can be divided into two categories: station dependent
and station independent. An example of a station dependent parameter is station gain, which
may be different for each station. An example of a station independent parameter is the Stokes
vector of a source, which should be the same for all stations. Let np denote the number of station
dependent parameters and nq the number of station independent parameters. The number of
station dependent parameters can be expressed as a constant (the number of parameters per
station) times the number of stations, i.e.:

np = c× ns

A baseline is the combination of two stations. Only 2× np/ns station dependent parameters are
relevant for any baseline. Hence, the maximal number of unknowns per baseline is 2× c + nq,
which is independent of the number of stations.

Per unknown we need to compute n′v perturbed visibilities. In section 3.3 we showed that the
number of steps required to compute visibilities is proportional to the number of visibilities for
a given model complexity. Hence, an upper bound on the number of steps required to execute the
EVALUATE MODEL sub-operation for a single baseline on a single solve domain is given by:

t′evaluate model ∼ O(n′ × (1 + 2× c + nq))

Considering all baselines and all solve domains, this becomes:

tevaluate model ∼ O(nv × (1 + 2× c + nq))

Although the total number of station dependent parameters is proportional to the number of
stations, the number of station dependent parameters per baseline is constant. Thus, for a given
model complexity, the number of steps required to execute the EVALUATE MODEL sub-operation is
proportional to the number of visibilities nv.

The CONSTRUCT EQUATIONS sub-operation consists of adding two condition equations for each
visibility to a normal matrix. Adding a condition equation to a normal matrix requires O(n2)
steps, where n denotes the number of unknowns in the condition equation (2× c + nq). Consid-
ering all baselines and all solve domains, the number of steps required to execute the CONSTRUCT
EQUATIONS sub-operation is given by:

tconstruct equations ∼ O(nv × (2× c + nq)2)

The COMPUTE SOLUTION sub-operation uses an algorithm that requires O(n3) steps, where n
denotes the total number of unknowns (np + nq). The algorithm is invoked for each solve domain.
Let N denote the number of solve domains. It follows that:

tcompute solution ∼ O(N × (np + nq)3)
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After completing the maximal number of iterations or reaching convergence, an estimate of the
error on the unknowns can optionally be computed. This algorithm has the same time complexity
as the COMPUTE SOLUTION sub-operation.

!!FIXME!! In practice, solveLoop() seems to scale at least as O(n4)? Check with Wim
Brouw.

Let ni denote the maximal number of iterations, then the SOLVE operation as a whole requires a
number of steps given by:

tsolve ∼ ni ×
[
O

(
nv × (1 + 2× c + nq)

)
+ O

(
nv × (2× c + nq)2

)
+ O

(
N × (np + nq)3

)]

3.5 Summary

We derived the time complexity of the core operations of BBS. Almost all processing scales lin-
early with the number of visibilities. An exception is the COMPUTE SOLUTION sub-operation,
which requires a number of steps proportional to the cube of the total number of unknowns.

4 In practice

Several measurements of the performance of BBS have been carried out. This section describes
the test setup, and dicusses the results.

4.1 Single core

The following two machines were used to test the single core performance of BBS:

• lioff008

Intel Xeon, 2.80 GHz, 512 Kb cache

g++ (GCC) 4.1.0 (SUSE Linux)

• Barcelona

Quad-Core AMD Opteron(tm) Processor 2350, 2.0 GHz, 512 Kb cache

g++ (GCC) 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)

4.1.1 PREDICT

The performance of the PREDICT operation was measured using various settings for the number
of baselines, the number of time slots, and the number of channels. The sky model contained
two sources at the location of CasA and CygA. Sarod’s analytical LBA dipole beam model was
included in the instrument model, as well as a separate J-jones (identity) matrix for each source –
station combination.

The PREDICT operation was repeated 10 times for each combination of number of baselines, num-
ber of time slots, number of channels. Only the evaluation of the expression tree was measured
(using a high precision timer around the process() function call inside the Prediffer). The time
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of every first run was discarded because it includes computation of UVW-coordinates that are
reused during subsequent runs.

Figure 1 shows a subset of the results on lioff008. Figure 2 shows the associated results on
Barcelona. To first order the results support the time complexity derived in section 3.3: The
figures shows a linear relation between processing time and the number of baselines, the number
of time slots, and the number of visibilities.

Figure 1 shows a remarkable peak for the run with 160 time slots and 256 channels. Similar peaks
can be seen in figure 2, for example the run with 160 time slots and 256 or 512 channels. The
cause of these peaks is currently unknown. However, most likely is has something to do with
the product of the number of channels and the number of time slots, which determines the buffer
size used during evaluation of the expression tree.

Furthermore, there seems to be a gap between the time it takes to process N time slots compared
to N times the time it takes to process a single time slot. For example, according to figure and 1(d),
it takes 18.62 seconds to process 120 baselines × 180 time slots × 256 channels × 4 polarizations.
But 1(c) suggests it should be possible in approximately 0.02592× 180 = 4.666 seconds. It would
be worth investigating the cause of this descrepancy.

Finally, comparing figures 1(d) and 2(d), the PREDICT operation seems to run roughly a factor 3.6
faster on Barcelona for the typical case of 256 channels.

4.1.2 SOLVE

The performance of the SOLVE operation was measured using various settings for the number
of baselines, the number of time slots, and the number of channels. The sky model contained
two sources at the location of CasA and CygA. Sarod’s analytical LBA dipole beam model was
included in the instrument model, as well as a separate J-jones (identity) matrix for each source
– station combination. A single solve domain was used, which contained the entire data domain.
The set of unknowns comprised all four (complex) elements of each J-jones matrix. All unknowns
were modelled as 0-order polynomials (constants).

For each combination of number of baselines, number of time slots, and number of channels, 11
iterations of the fitting procedure were performed. Both the evaluation of the expression tree and
the construction of condition equations was measured (using a high precision timer around the
process() function call inside the Prediffer). The time of every first iteration was discarded
because it includes computation of UVW-coordinates that are reused during subsequent runs.
The time required to solve the normal equations was not measured.

Figure 3 shows a subset of the results on lioff008. Figure 4 shows the associated results on
Barcelona. Note that the time required to solve the normal equations was not measured. There-
fore, we should ignore the third term in the time complexity derived in 3.4, which results in a
time complexity that is linear in the number of visibilities. Indeed, to first order the results show
a linear relation between processing time and the number of baselines, the number of time slots,
and the number of visibilities.

The figures show several odd peaks, similar to those described in section 4.1.1. Contrary to the
PREDICT operation, there does not seem to be a significant gap between the time required to
process N time slots and N times the time it takes to process a single time slot. Comparing
figures 3(d) and 4(d), the SOLVE operation seems to run roughly a factor 2 faster on Barcelona.

4.2 Multi-core

Barcelona (see section 4.1) was used to measure the multi-core performance of BBS. This is a dual
quad core AMD machine. Each quad core has its own memory controller. We used g++-4.2 (GCC)
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Figure 1: Timings of the PREDICT operation on lioff008, excluding the time required to compute
UVW-coordinates.
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Figure 2: Timings of the PREDICT operation on Barcelona, excluding the time required to compute
UVW-coordinates.
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Figure 3: Timings of the SOLVE operation on lioff008, excluding both the time required to compute
UVW-coordinates and the time required to communicate and solve the normal equations.
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Figure 4: Timings of the SOLVE operation on Barcelona, excluding both the time required to com-
pute UVW-coordinates and the time required to communicate and solve the normal equations.
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Figure 5: Speed-up of the PREDICT and SOLVE operations on Barcelona.
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(a) Speed-up of the PREDICT operation.
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(b) Speed-up of the SOLVE operation.

4.2.1 (Ubuntu 4.2.1-5ubuntu4) because the multi-threaded implementation of BBS uses OpenMP,
which is not supported by g++-4.1.

4.2.1 PREDICT and SOLVE

The results presented in this section were obtained just before Barcelona had to be shipped back
to the supplier. Therefore, we were unable to perform a representative number of runs. Yet, the
results were sufficiently interesting to include them in this report.

To test the performance of the PREDICT operation, we measured the time required to compute
visibilities for 120 baselines × 240 time slots × 256 channels × 4 polarizations. The sky model
contained two sources at the location of CasA and CygA. Sarod’s analytical LBA dipole beam
model was included in the instrument model, as well as a separate J-jones (identity) matrix for
each source – station combination. The PREDICT operation was repeated 5 times. Only the eval-
uation of the expression tree was measured (using a high precision timer around the process()
function call inside the Prediffer). The time of every first run was discarded because it includes
computation of UVW-coordinates that are reused during subsequent runs.

To test the performance of the SOLVE operation, we measured the time required to process the
visibilities for 120 baselines × 240 time slots × 256 channels × 4 polarizations. The sky model
contained two sources at the location of CasA and CygA. Sarod’s analytical LBA dipole beam
model was included in the instrument model, as well as a separate J-jones matrix for each source
– station combination. A single solve domain was used, which contained the entire data domain.
The set of unknowns comprised all four (complex) elements of each J-jones matrix. All unknowns
were modelled as 0-order polynomials (constants). The fitting procedure was iterated 6 times.
The time of the first iteration was discarded because it includes computation of UVW-coordinates
that are re-used during subsequent runs. The time required to solve the normal equations was
not measured.

Figure 5 shows the speed-up as a function of the number of threads for both the PREDICT and the
SOLVE operation. The figure shows that the speed-up achieved for the SOLVE operation is much
better than that achieved for the PREDICT operation. This seems strange because the SOLVE op-
eration involves computing visibilities as well (in the EVALUATE MODEL sub-operation). Figure
6 shows a separate speed-up curve for the EVALUATE MODEL sub-operation and the CONSTRUCT
EQUATIONS sub-operation. It shows that the speed-up of the EVALUATE MODEL sub-operation
flattens off although it is still better than the speed-up of the PREDICT operation. However, the
CONSTRUCT EQUATIONS sub-operation achieves super-linear speed-up, which compensates for
the loss of performance in the EVALUATE MODEL sub-operation.
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Figure 6: Speed-up of the EVALUATE MODEL and CONSTRUCT EQUATIONS sub-operations of the
SOLVE operation on Barcelona.
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(a) Speed-up of the EVALUATE MODEL sub-operation.
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(b) Speed-up of the CONSTRUCT EQUATIONS sub-
operation.

4.2.2 Total run time of a CS1 calibration strategy

A goal of the performance tests described in this section was to come up with an estimate of the
time it will take to reduce an observation done with the Q1 2009 configuration. The details of
a realistic calibration strategy for LOFAR are still unknown and some functionality that will be
required has not been implemented yet. Therefore, we measured the performance of the calibra-
tion strategy we currently use for CS1 data, knowing that this can only provide a lower bound on
the time that will eventually be needed to calibrate LOFAR data to a sufficient level.

Part of a real CS1 measurement was used for the performance tests. This partial measurement
contained 120 baselines, 240 time slots, 256 channels, and 4 polarizations. The sky model con-
tained two sources at the location of CasA and CygA. Sarod’s analytical LBA dipole beam model
was included in the instrument model, as well as a separate J-jones (identity) matrix for each
source – station combination. Each solve domain contained 256 channels and 1 time slot, yield-
ing 240 solve domains in total. The set of unknowns comprised all four (complex) elements of
each J-jones matrix. All unknowns were modelled as 0-order polynomials (constants). The cali-
bration strategy consisted of solving for the unknowns using 5 iterations, subtracting CasA and
CygA from the data, and correcting the residuals for the J-jones matrix in the direction of CasA.

We compared the speed-up using multiple threads within a single process to that using multiple
processes. In the first case, the total run time was measured as a function of the number of threads
used. Each thread processed a different part of the same data set. Figure 7 shows the results. In
the second case, a variable number of processes were started simultaneously. The total run time
of each individual process was measured. Each process operated on its own data set. Figure 8
shows the results.

The results suggest that with the current implementation it is better to use multiple processes.
However, this may also indicate that the serial part of the code is inefficient. For instance, suppose
writing solutions to disk is implemented inefficiently such that it is only able to make use of
one tenth of the disk’s bandwidth. In such cases, it is likely that performance can be gained by
having multiple processes write solutions simultaneously. However, if the implementation of the
writing routine could be improved such that it makes efficient use of the disk’s bandwidth, using
multiple processes will not gain much compared to using multiple threads.
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Figure 7: Total run time and speed-up running BBS using multi-threading.
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Figure 8: Total run time and speed-up running BBS using multiple processes.
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5 Conclusion

We derived time complexities for the core BBS operations and partially verified this theory against
measured run times of the current implementation. The derived time complexities can be used
to scale measured run times to future telescope configurations. (Of course, provided that the
derived time complexities are correct). Also, they can be used to check our understanding of the
software. If we measure run times that contradict the theory, than there is an error either in the
software or in the theory (or both). Improving either is progress.

The run times documented in section 4 of this report can be used as a benchmark for future
versions of BBS and for judging the performance on different hardware. However, one should be
careful to use exactly the same test setup. This highlights on of the difficulties we encountered
while testing the performance of BBS: There are so many possible settings that is becomes a
challenge to test the performance in a structured way.

Now, let us return to the goal of providing an estimate of the run time of the calibration software
on Q1 2009 observations. Comparing the situation at Q1 2009 with the situation at Q1 2008, the
number of stations1 will increase from 16 to 34 – 38. The number of baselines will increase from
120 to 561 – 703, which corresponds to a factor ∼4.68 – 5.86. The integration time will decrease
from 30 s to 1 s. Therefore, in total, the number of visibilities will increase by a factor ∼140 – 176.
The number of station dependent parameters will increase by a factor ∼2.13 – 2.38.

The run time of BBS is dominated by code that operates on visibilities. Therefore, we may expect
that if we would run the current implementation on an observation performed with the Q1 2009
configuration, the run time will at least increase with the same factor as the number of visibilities.
Using the Barcelona as an example, it takes approximately 875 seconds to process 240 time slots
of a single sub-band (256 channels) using the current implementation (see figure 8(a)). Scaling
this up to the Q1 2009 configuration it will take around 21 hours and 22 minutes to process 1
hour of data for a single sub-band. Assuming we can use multiple cores effectively, we would need
around 22 cores per sub-band to process the data in real time. As there are 205 sub-bands, this
amounts to 4510 cores in total.

At Q4 2009 the number of stations will increase again, to 55 – 85. As a result, the number of
baselines will increase by a factor ∼2.65 – 5.08 and the number of station dependent parameters
will increase by a factor ∼1.62 – 2.24.

Of course, the above is a ’back-of-an-envelope’ estimate. The run time of 875 seconds mentioned
above was measured for a specific calibration strategy (described in section 4.2.2). However, it
can be viewed as a lower bound in the sense that the eventual calibration strategy will likely be
much more complex.

1We quote the number of HBA stations at Q1 2009 because there will be more HBA stations than LBA stations and we
want to give the worst case scale factor.
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