Precision radio detection of cosmic ray air showers

Olaf Scholten

kvi - center for advanced a radiation technology

DORA Scintillator

university of

groningen

For the LOFAR Cosmic Ray KSP & Cosmic Lightning Project

Multiple emission mechanisms

Geomagnetic:

Electrons & positrons have transverse drift, induced by geomagnetic field.
Linearly polarized, Unidirectional along v x B

Charge excess:

- Negative charge buildup at shower front.

- Linearly polarized, Radially from shower axis

The full signal^{$E = E \downarrow G + E \downarrow C$} Time-compression effects.

modified by

Interpretation circular-polarization for fair weather

ChX Peaks lower in atmosphere than GM (physics) At 100 m, 30-80 MHz, delay = 1 ns

$$I = \frac{1}{n} \sum_{0}^{n-1} \left(|\mathcal{E}|^2_{i,\vec{v}\times\vec{B}} + |\mathcal{E}|^2_{i,\vec{v}\times\vec{v}\times\vec{B}} \right)$$
$$Q = \frac{1}{n} \sum_{0}^{n-1} \left(|\mathcal{E}|^2_{i,\vec{v}\times\vec{B}} - |\mathcal{E}|^2_{i,\vec{v}\times\vec{v}\times\vec{B}} \right)$$
$$U + iV = \frac{2}{n} \sum_{0}^{n-1} \left(\mathcal{E}_{i,\vec{v}\times\vec{B}} \mathcal{E}^*_{i,\vec{v}\times\vec{v}\times\vec{B}} \right) .$$

Stokes parameter V is measure of circular polarization

Slight delay between GM &ChX causes rotation in polarization

3

LOFAR data v.s. CoREAS

Transverse current is 1ns ahead of Charge excess pulse (@ 100m, 30-80 MHz)

Linear polarization direction

Circular polarization

Conclusion:

even the very subtle circular polarization is well understood & accurately measured at LOFAR

Observations; polarization footprint

Observations; intensity footprint

Observations: circular polarization Fair weather vs thunderstorm

24-Jun-17

Physics for thunderstorm events

Atmospheric fields induce electric currents in shower plasma

Like for Fair Weather: Circular polarization due to emission-height differences.

Here: caused by height dependence of orientation of atmospheric fields.

Independent of observer position.

Atmospheric electric fields

Challenge: Many parameters → grid search cumbersome Levenberg-Marquardt minimization requires: Fast & Deterministic code Semi-analytic approximation developed

24-Jun-17

LOFAR2017-Bologna

A reconstructed thunderstorm event

Conclusions

Radio emission from air showers is very well understood Radio emission from air showers is accurately measured at LOFAR example of both: circular polarization for fair weather

Thus:

Radio-detection of air showers can be used as diagnostic tool

- X-max
- atmospheric electric fields

Uniqueness of the results

22-Jun-17

Analytic code vs CoREAS

Full polarization, Stokes

$$\begin{split} I &= \frac{1}{n} \sum_{0}^{n-1} \left(|\mathcal{E}|^2_{i, \vec{v} \times \vec{B}} + |\mathcal{E}|^2_{i, \vec{v} \times \vec{v} \times \vec{B}} \right) \\ Q &= \frac{1}{n} \sum_{0}^{n-1} \left(|\mathcal{E}|^2_{i, \vec{v} \times \vec{B}} - |\mathcal{E}|^2_{i, \vec{v} \times \vec{v} \times \vec{B}} \right) \\ U + iV &= \frac{2}{n} \sum_{0}^{n-1} \left(\mathcal{E}_{i, \vec{v} \times \vec{B}} \mathcal{E}^*_{i, \vec{v} \times \vec{v} \times \vec{B}} \right) \,. \end{split}$$

Stokes parameters: I, Q, U, V Linear polarization angle: 2 φ =atan(U/Q) Circular polarization = V/I

Interesting results:

Fair weather:

confirmation of emission mechanisms

Thunderstorm:

Finite circular pol. near core due to changing atmospheric E-field