Finding millisecond pulsars with LOFAR

Cees Bassa

Ziggy Pleunis, Jason Hessels, Vlad Kondratiev, Sotiris Sanidas, Elizabeth Ferrara

ASTRON

June 19, 2017

European Research Council Established by the European Commission

Why search for millisecond pulsars?

MSPs are flywheels in space

Extremely stable rotation rivals terrestial atomic clocks; provides km scale measurements of distance changes on distances of kpc

MSPs can be used to understand:

- □ the neutron star equation-of-state
- tests of General Relativity
- □ binary evolution
- □ the physics of accretion
- the emission mechanism

Searching for MSPs with LOFAR

Advantages:

- □ Steep radio spectra → bright at low frequencies
- Unexplored parameter space

Disadvantages:

- Interstellar medium (dispersion & scattering)
- High time resolution/data rates, limited field-of-view

Semi-coherent dedispersion (Bassa et al. 2017)

Targeted surveys of *Fermi* γ -ray sources

(Scott Ransom)

~	_		<u></u>	0011
1.000	$2 \sim c \sim $	•••	<u> </u>	
	10330 1	~		110218
			_	

31.5

LOFAR MSP survey of *Fermi* γ -ray sources

Observational setup:

- complex voltage data
- 7 tied-array beams
- 21 HBA core stations
- 115 to 155 MHz (200 subbands)
- \Box target MSP-like γ -ray sources
- \square 2 × 20 min per target

Processing:

- □ 80 coherent DM trials up to 80 pc/cc
- 40k incoherent DM trials
- □ frequency-domain acceleration searches with PRESTO
- processing on DRAGNET GPU cluster (8 h per 20 min observation)

1st Discovery: PSR J1552+5437

Properties:

- Discovered in LOFAR pilot survey (52 3FGL sources targeted)
- $\square P = 2.43 \, \text{ms} \, (412 \, \text{Hz}),$ DM = 22.90 pc/cc
- Isolated pulsar
- □ Steep radio spectrum $(S_{\nu} \propto \nu^{\alpha} \text{ with } \alpha < -2.8)$
- Radio and γ-ray profiles are aligned

(Pleunis et al., submitted)

2nd Discovery: PSR J0952-0607

Properties:

- Discovered in follow-up survey (targeting unpublished *Fermi* sources)
- \square *P* = 1.41 ms (707 Hz), DM = 22.41 pc/cc
- □ Fastest MSP in the Galactic field!
- Bright! (S/N ~ 50 in 20 mins)
- □ Binary system: $P_b = 6.42$ hr, very low-mass companion ($M_c \gtrsim 0.02$ M_☉; black widow type)
- Highly variable optical companion
- □ Steep radio spectrum ($S_{\nu} \propto \nu^{\alpha}$ with $\alpha \sim -3.3$)
- $\Box \gamma$ -ray analysis ongoing...
- Proximity makes it an excellent target for follow-up (measure masses through optical spectroscopy/light curve modelling).

(Bassa et al., submitted)

3rd Discovery: PSR J0652+47

Properties:

- Discovered in follow-up survey (targeting unpublished *Fermi* sources)
- \square P = 4.75 ms (211 Hz), DM = 25.54 pc/cc
- □ Binary system: $P_b = 5.84 \text{ d}$, probable white dwarf companion ($M_c \sim 0.2 \text{ M}_{\odot}$)
- □ Brighter at 350 MHz, also seen at 1.4 GHz $(\alpha = -1 \text{ to } -2)$
- Sky location interesting for pulsar timing arrays

MSP properties

- □ Do the fastest spinning MSPs have the steepest spectra?
- Related to small light cylinder, low magnetic fields?

Conclusions

Conclusions:

- Discovery of 3 MSPs with LOFAR
- Tendency for steep radio spectra; hard to discover at higher frequencies
- 707 Hz MSP is fastest in Galactic field
- \Box Insight into emission mechanism from γ -ray/radio profile alignment
- □ Coherent dedispersion is a must for finding MSPs at these low frequencies
- LOFAR/SKA1-low are ideally suited to find these steep spectrum MSPs
- □ Are all steep spectrum MSPs fast? If so, they provide constraints neutron star Equation-of-State...

Thank you!

Conclusions

Conclusions:

- Discovery of 3 MSPs with LOFAR
- □ Tendency for steep radio spectra; hard to discover at higher frequencies
- 707 Hz MSP is fastest in Galactic field
- \Box Insight into emission mechanism from γ -ray/radio profile alignment
- □ Coherent dedispersion is a must for finding MSPs at these low frequencies
- □ LOFAR/SKA1-low are ideally suited to find these steep spectrum MSPs
- □ Are all steep spectrum MSPs fast? If so, they provide constraints neutron star Equation-of-State...

Thank you!