Upper limits on the 21-cm EoR power spectrum with LOFAR

Ger de Bruyn (Astron) presented by André Offringa (Astron) on behalf of the LOFAR EoR group

Bologna, 19 June 2017

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

The LOFAR EoR team

Spineto, Italy, June 2014

Spineto, Italy, June 2014

LOFAR EoR MT:

Ger de Bruyn, Leon Koopmans, André Offringa, Saleem Zaroubi, Michiel Brentjens

Working on power spectra:

Sarod Yatawatta, Maaijke Mevius, Florent Mertens, André Offringa, Ger de Bruyn, Leon Koopmans (Ajinkya Patil)

LOFAR core configuration - 'tailored' to EoR project

Core dimension 2 x 2.5 km

the iconic 'superterp' diameter ~ 350 m (12 x 24-tile stations)

The Epoch of Reionization

- A key era in the evolution of our universe
- Many open questions, e.g.:
 - When and how quick?
 - What sources?
 - How did the ionization evolve?
- The EoR answers define the "initial conditions" for galaxy formation
 - Constrain cosmological parameters

13.8 Byr

UPPER LIMITS ON THE 21-CM EPOCH OF REIONIZATION POWER SPECTRUM FROM ONE NIGHT WITH LOFAR

A.H. PATIL¹, S. YATAWATTA^{1,2}, L.V.E. KOOPMANS^{1,†}, A.G. DE BRUYN^{2,1}, M. A. BRENTJENS², S. ZAROUBI^{1,11}, K. M. B. ASAD¹, M. HATEF¹, V. JELIĆ^{1,8,2}, M. MEVIUS^{1,2}, A. R. OFFRINGA², V.N. PANDEY¹, H. VEDANTHAM^{9,1}, F. B. ABDALLA^{7, 13}, W. N. BROUW¹, E. CHAPMAN⁷, B. CIARDI⁴, B. K. GEHLOT¹, A. GHOSH¹, G. HARKER^{3,7,1}, I. T. ILIEV¹⁰, K. KAKIICHI⁴, S. MAJUMDAR¹², M. B. SILVA¹, G. MELLEMA⁵, J. SCHAYE⁶, D. VRBANEC⁴, S. J. WIJNHOLDS²

¹Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands

²ASTRON, P.O.Box 2, 7990 AA Dwingeloo, The Netherlands

³Center for Astrophysics and Space Astronomy, Dept. of Astrophysics and Planetary Sciences, University of Colorado at Boulder, CO 80309, USA

⁴Max-Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, 85748 Garching, Germany

⁵Department of Astronomy and Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, Stockholm University, SE-106 91 Stockholm, Sweden

⁶Leiden Observatory, Leiden University, PO Box 9513, 2300RA Leiden, The Netherlands

⁷Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London, UK

⁸Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

⁹Cahill Center for Astronomy and Astrophysics, MC 249-17, California Institute of Technology, Pasadena, CA 91125, USA

¹⁰Astronomy Centre, Department of Physics & Astronomy, Pevensey II Building, University of Sussex, Brighton BN1 9QH, UK

¹¹Department of Natural Sciences, The Open University of Israel, 1 University Road, PO Box 808, Ra'anana 4353701, Israel

¹²Department of Physics, Blackett Laboratory, Imperial College, London SW7 2AZ, UK

¹³Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa

ABSTRACT

We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range z = 7.9 - 10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13.0 h of data were used from observations centred on the North Celestial Pole (NCP). After subtraction of the sky model and the noise bias, we detect a non-zero $\Delta_{I}^{2} = (56 \pm 13 \text{ mK})^{2} (1-\sigma)$ excess variance and a best $2-\sigma$ upper limit of $\Delta_{21}^{2} < (79.6 \text{ mK})^{2}$ at $k = 0.053 h \text{ cMpc}^{-1}$ in the range z = 9.6 - 10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) *leverage* due to non-linear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.

Keywords: cosmology: theory - large-scale structure of Universe - observations - diffuse radiation - methods: statistical - radio lines: general - cosmology: dark ages, reionization, first stars

1. INTRODUCTION

During the Epoch of Reionization (EoR) hydrogen gas in the universe transitioned from neutral to ionized (Madau limit inferred from the Gunn-Peterson trough in high-redshift quasar spectra (Becker et al. 2001; Fan, *et al.* 2003, 2006), and the upper limit of the redshift range currently being set

LOFAR: Two main fields

- LOFAR observations are focused on 2 fields:
- North Celestial Pole (NCP)
 - Quiet field and always visible
 - Leaked RFI might be harder to handle.
 - 1,300 h observed, ~80% usable.
 - First 13-h upper limits published
- 3c196
 - Not quiet, but high SNR and easier to handle RFI.
 - 1,000 h observed, \sim 80% usable.

VLBI 3c196 model

Current 3c196 model (by P. Vishambhar) Made from Dutch stations

LOFAR VLBI model (not yet used)

3c196 subtraction

(old model)

The NCP field

Stokes I (30-800 λ) - all sources

Calibration strategy

- Direction independent cal: global solution, but with separate solutions for 3c61.1
- Direction dependent cal: Subtract full model with solutions for 120 directions
- Both steps are performed with Sagecal Concensus (S. Yatawatta), using long baselines only.
- Sagecal uses regularization to penalize unsmooth solutions over frequency

Recent progress

- So far, we have excluded 50-250λ data in calibration to avoid signal suppression, but giving rise to statistical leverage (excess noise).
- Our model now includes diffuse Stokes I, Q & U (RM=0) emission. This avoids suppression and therefore allows including 50-250λ data in DD calibration.
- We switched from **GMCA** to **Gaussian Process Regression** (GPR, Mertens in prep.) for removing diffuse emission.
- We continue to improve our models:
 - Work on automated modelling pipeline, more sources
 - LOFAR VLBI measurements

Stokes I, after running Sagecal

Sagecal subtracts the sky model with direction dependent solutions Area used for the

Stokes V, after running Sagecal

Stokes I at "PS resolution"

24

18

12

6

0

-6

-12

-18

-24

Stokes I (50-250 λ) - residuals

Stokes V at "PS resolution"

Stokes V (50-250 λ) - residuals

Diffuse foreground removal

After calibration, "GMCA" is used to remove diffuse, "non-EoR"-like signals.

Figure to the right: Slices throught the image cube

New diffuse subtraction method: GPR

Cylindrical power spectra

Stokes V

Spherical power spectra

3-night spherical PS (preliminary)

Comparison of current progress

Current best 2-sigma upper limits NB: Limits are at different redshifts

Comparison of current progress

Current best 2-sigma upper limits NB: Limits are at different redshifts

Next steps

- Process 10-20 nights of the NCP
 - Include 50-250 λ data in DD calibration
 - With GPR
- Improve model & strategy for deconvolution & calibration
- Use VLBI 3c196 model