The eclipses of black widow pulsar J1810+1744

Elliott Polzin, Rene Breton, LOFAR PWG

Jodrell Bank Centre for Astrophysics University of Manchester

June 19, 2017

The eclipses of black widow pulsar J1810+1744

Black widow pulsars

- \sim 30 known systems^a
- Tight orbits
 - $P_b < 1 \text{ day}$
 - Separation ~ few solar radii!
- $M_c = 0.01 0.05 \, \mathrm{M}_{\odot}$
- Strong irradiation of tidally locked companion
 - Heated & bloated companion
 - Ablation of material from surface
 - Full evaporation of companion?

^a original discovery Fruchter et al., 1988

3

Eclipses

- Observed in many BWs
- *Pulsed* radio emission diminished or fully eclipsed for some orbital phases
 - Dependent on observing frequency
- Centred near companion inferior conjunction
 - Duration implies medium larger than companion Roche lobe
 - Thus, eclipse medium not gravitationally bound to companion

Craft: KMX/ Godderd Space Tight Center

In-depth eclipse analysis for only a handful of black widows

Why study black widows?

General

- Further understand physical mechanism responsible for eclipses
- Infer mass-loss rate from companions
- Identify the nature of the irradiated companions
- Probe into the pulsar wind
- Why low frequencies?
 - ▶ BW pulsar radio emission usually brighter with decreasing frequency^a
 - Sensitive to small variations in eclipsing medium
 - Rarely studied before!

^a Intema et al., 2017; Murphy et al., 2017

J1810+1744

• Pulsar:

P _{orbital}		DM	Binary
(hours)	<i>P</i> (ms)	$(pc cm^{-3})$	Separation
3.6	1.66	39.66	$1.33~{ m R}_{\odot}$ a

• Data:

Telescope	Туре	Freq	Orbital coverage
LOFAR	Imaging &	110 - 188 MHz	1x full eclipse
	beamform		4x egress
WSRT	Beamform	310 - 380 MHz	1x full eclipse

^a Breton et al., 2013

・ロン ・部 と ・ ヨ と ・ ヨ と …

• Dispersion measure \propto electron column density along line-of-sight

- Probe into density of material near eclipse
- Measurable as frequency dependent delays,

 $\Delta t \propto DM \
u^{-2}$

- Additional scattering of radio pulse near eclipse
 - Probe into structure of material and eclipse mechanism
 - Time delays in pulse well approximated by convolution with exponential function,

Pulse *
$$rac{1}{ au} \exp^{-\phi/ au}$$
, $au \propto
u^{-4}$

- Created 2-D template (frequency vs pulse phase) from out-of-eclipse observations
- ullet Generated array of templates for a range of DM & τ

• For each time interval of data, fit template baseline and scale factor

E. Polzin (JBCA)

The eclipses of black widow pulsar J1810+1744

8 / 12

E. Polzin (JBCA)

The eclipses of black widow pulsar J1810+1744

Imaging

- Calibrated using standard LOFAR software and imaged with CASA, using 1 minute time intervals
- Flux extracted with PyBDSF

Non-eclipse

E. Polzin (JBCA)

The eclipses of black widow pulsar J1810+1744

Combined results

- Clear asymmetry
- Higher frequency higher density

• Continuum eclipse = pulsed eclipse

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Duration $\propto \nu^{-0.43\pm0.12}$

Summary

- Variable outer edges of eclipse medium
- No steep scattering trends
- Continuum eclipse = pulsed eclipse
 - Likely absorption mechanism
- Clear frequency dependence
 - Eclipse duration $\propto \nu^{-0.43\pm0.12}$
 - ► Consistent with J2215+5135^a & B1957+20^b, with cyclo/synchrotron absorption favoured mechanism^c
- Clear asymmetry of both eclipse and DM
 - Centred after inferior conjunction of companion
 - Medium swept back due to orbital motion?^b

^a Broderick et al., 2013

^b Fruchter et al., 1990

^c Thompson et al., 1994; Khechinashvili et al., 2000

・ロト ・得ト ・ヨト ・ヨト