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More needed...

QSO

redshift=

Age of Universe=

∫
CMB

Existing observations leaves much unanswered:
1) Lyman-alpha forest: end point z>6.5
2) CMB optical depth: mid point z~9±1.5
3) kSZ amplitude: duration z<3 ?

HST probes skewer much smaller than scale of ionized regions + only brightest sources

Fundamental need for new types of observation to understand details of reionization

HUDF

LAE surveys (e.g. HSC) may eventually show enhanced clustering from reionization  
LBG/LAE surveys with Euclid possible to z~8 in deep field
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Evolving optical depth

tau has fallen consistently as systematics better accounted for

Planck Collaboration: Large-scale polarization and reionization

Fig. 41. History of ⌧ determination with WMAP and Planck. We have omitted the first WMAP determination (⌧ = 0.17 ± 0.004,
Bennett et al. 2003), which was based on T E alone.

Table 8. Parameter constraints for the base⇤CDM cosmology (as defined in Planck Collaboration XVI 2014), illustrating the impact
of replacing the LFI-based lowP likelihood (used in the 2015 Planck papers) with the HFI-based SimLow likelihood discussed in
the text. We also present here the change when including the high-` polarization.

PlanckTT+lowP PlanckTT+SIMlow PlanckTTTEEE+lowP PlanckTTTEEE+SIMlow
Parameter 68 % limits 68 % limits 68 % limits 68 % limits

⌦bh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02214 ± 0.00022 0.02225 ± 0.00016 0.02218 ± 0.00015

⌦ch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1207 ± 0.0021 0.1198 ± 0.0015 0.1205 ± 0.0014

100✓MC . . . . . . . . 1.04085 ± 0.00047 1.04075 ± 0.00047 1.04077 ± 0.00032 1.04069 ± 0.00031

⌧ . . . . . . . . . . . . 0.078 ± 0.019 0.0581 ± 0.0094 0.079 ± 0.017 0.0596 ± 0.0089

ln(1010As) . . . . . . . 3.089 ± 0.036 3.053 ± 0.019 3.094 ± 0.034 3.056 ± 0.018

ns . . . . . . . . . . . 0.9655 ± 0.0062 0.9624 ± 0.0057 0.9645 ± 0.0049 0.9619 ± 0.0045

H0 . . . . . . . . . . . 67.31 ± 0.96 66.88 ± 0.91 67.27 ± 0.66 66.93 ± 0.62

⌦m . . . . . . . . . . . 0.315 ± 0.013 0.321 ± 0.013 0.3156 ± 0.0091 0.3202 ± 0.0087

�8 . . . . . . . . . . . 0.829 ± 0.014 0.8167 ± 0.0095 0.831 ± 0.013 0.8174 ± 0.0081

�8⌦
0.5
m . . . . . . . . . 0.466 ± 0.013 0.463 ± 0.013 0.4668 ± 0.0098 0.4625 ± 0.0091

�8⌦
0.25
m . . . . . . . . 0.621 ± 0.013 0.615 ± 0.012 0.623 ± 0.011 0.6148 ± 0.0086

zre . . . . . . . . . . . 9.891.8
�1.6 8.11 ± 0.93 10.01.7

�1.5 8.24 ± 0.88

109Ase�2⌧ . . . . . . . 1.880 ± 0.014 1.885 ± 0.014 1.882 ± 0.012 1.886 ± 0.012

Age/Gyr . . . . . . . 13.813 ± 0.038 13.829 ± 0.036 13.813 ± 0.026 13.826 ± 0.025

(` < 1500) is broken by the lensing e↵ect seen in the higher part
of the spectrum.

However, the ` >⇠ 1000 part of the Planck spectrum is charac-
terized by peaks that are slightly broader and smoother than what
the ⇤CDM model predicts. The high-multipole peak smooth-
ing is compatible with a slightly stronger lensing amplitude,
and translates into a roughly 2�-high phenomenological pa-
rameter AL value. The A��L = 0.95 ± 0.04 value derived from

the lensing power spectrum (Planck Collaboration XIII 2016)
supports that this would just be a statistical fluctuation, rather
than a peculiar feature of the lensing power spectrum itself.
Nevertheless, the preference for a larger lensing amplitude at
high multipoles pushes the normalization and the optical depth
values up. The lowP likelihood was not statistically powerful
enough to counteract this trend, and so in the PlanckTT+lowP
analysis ⌧ is driven upwards compared to Eq. (13). This e↵ect
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the radiometer equation, where the noise temperature
variance �2 is given by

�2 =
2T 2

sys

tint�⌫
, (4)

where tint is the integration time (set to 500 hours for
all global signal experiments considered in this paper),
�⌫ is the frequency channel width (set to 1MHz), and
Tsys is the system temperature (set to be equal to the
sky temperature for low-frequency, sky-noise dominated
regime considered here). The factor of two arises from
the squared nature of auto-correlation experiments like
the single-dipole experiments considered here, where the
variance goes as the four-point function of the (Gaussian-
distributed) output voltages.

For the CMB, we make use of publicly available data
products from the Planck satellite’s 2015 data release.
We use only the best fit values for cosmological param-
eters and their accompanying covariance matrices, es-
sentially approximating parameter uncertainties as be-
ing Gaussian, forgoing the also-publicly available non-
Gaussian posterior distributions. This approximation is
made to match the simplicity of the 21 cm parameter es-
timates, which are based on the Fisher matrix formalism
to avoid the computational expense of a full Bayesian
treatment. Throughout the paper, we will focus on the
“TT+lowP” and the “TT,TE,EE + lowP + lensing +
ext” datasets from the Planck 2015 data release [2, 36].
These datasets bracket the range of uncertainties from
the data release, with the TT+low dataset having rela-
tively large errors by Planck standards, while TT,TE,EE
+ lowP + lensing + ext has the tightest error bars. Con-
veniently, these datasets are also close to representing
the extremes in terms of reionization scenarios allowed
by CMB data. The TT+low dataset implies a relatively
high redshift zion for reionization (zion ⇡ 9.9, assuming
a width �zion ⇠ 0.5 in the ionization history), whereas
TT,TE,EE + lowP + lensing + ext is best fit by a later
reionization epoch (zion ⇡ 8.8). As was demonstrated
in Ref. [27], this can have a rather large impact on
reionization constraints from 21 cm measurements. In
either case, HERA’s broad frequency range (from 100 to
200MHz, with strong possibilities for extensions on ei-
ther end of the spectrum) allows a precise determination
of ⌧ from 21 cm data.

III. INGREDIENTS FOR A PRECISE
PREDICTION OF ⌧

In practical terms, the optical depth ⌧ is a nuisance
parameter that is self-consistently fit for in CMB stud-
ies. While such an approach is attractive in that it does
not require detailed models of reionization (or any other
process that may produce free electrons), its downside is
that one must simply accept any degeneracies in param-
eter fits. In particular, CMB experiments are much more
sensitive to the overall combination of Ase

�2⌧ than to

As or ⌧ individually. Our goal in this paper is to show
how this degeneracy can be broken with the aid of 21 cm
data. Typically, this requires modeling the underlying
astrophysics of reionization, and in this section we pre-
cisely describe the various quantities (both astrophysical
and cosmological) that are needed for such modeling.
The optical depth is given by

⌧ = �T

Z
ne(z)

dl

dz
dz, (5)

where �T is the Thomson cross-section, ne is the free-
electron number density (with the overline denoting an
average over all sky directions), and dl/dz is the line-
of-sight proper distance per unit redshift. Explicitly, ne

may be decomposed as

ne = xHIInH + xHeIInHe + xHeIIInHe

= xHIInb +
1

4
xHeIIInbY

BBN
p

= nb


xHII(1 + �b) +

1

4
xHeIII(1 + �b)Y

BBN
p

�
, (6)

where nH, nHe, and nb = nH + nHe are the hydrogen,
helium, and baryon number densities, respectively. The
ionization fractions (defined to be between 0 and 1) are
given by xHII, xHeII, and xHeIII, referring to singly ionized
hydrogen, singly ionized helium, and doubly ionized he-
lium, respectively. The helium fraction Y BBN

p is defined
as 4nHe/nb, and �b denotes the baryon overdensity.2 In
the penultimate equality, we made the standard approx-
imation that the helium is singly reionized at the same
time as hydrogen is, and in the final equality, we used
the fact that nb = nb(1 + �b). With this factorization,
the averaged baryon density can be easily related to cos-
mological parameters via

nb =
3H2

0⌦b

8⇡Gµmp
(1 + z)3, (7)

where ⌦b is the normalized baryon density, G is the grav-
itational constant, mp is the mass of the proton, and µ
is the mean molecular weight, which in our case is given
by

µ = 1 +
Y BBN
p

4

✓
mHe

mH
� 1

◆
. (8)

Finally, we assume a flat universe and thus have as our
di↵erential line element

dl

dz
=

c/H0

(1 + z)
p
⌦m(1 + z)3 + ⌦⇤

. (9)

2 We follow the Planck team’s convention and notation in defining
Y BBN
p as four times the number density fraction, rather than as

the helium mass fraction (which would instead be defined as
4nHe/[nH + (mHe/mH)nH], where mH and mHe are the atomic
weights of hydrogen and helium, respectively).
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Fig. 9. Constraints on the kSZ amplitude at ` = 3000 using
lollipop+PlanckTT+VHL likelihoods. The three cases corre-
spond to di↵erent kSZ templates.

this new analysis. The data presented here provide the best con-
straint to date on the kSZ power and is a factor of 2 lower than
the limit reported in George et al. (2015). Our limit is certainly
not in tension with the homogeneous kSZ template, which pre-
dicts AkSZ = 1.79 µK2. However, it does not leave much room
for any additional kSZ power coming from patchy reionization.

Consistent with George et al. (2015), we find the total kSZ
power to be stable against varying tSZ and CIB templates. We
also find very little dependence on the choice of the kSZ tem-
plate (Fig. 9). This confirms that there is only a modest amount
of information in the angular shape of the kSZ signal with the
current data.

5. Constraints on the reionization history

We now interpret our measurements of the reionization observ-
ables in terms of constraint on the reionization history. We
mainly focus on the determination of the reionization redshift
zre and its duration �z = zbeg � zend. We show only the results
for �z greater than unity, which corresponds to approximatively
90 Myr at redshift z = 8. We first begin by looking at constraints
on the EoR for symmetric and asymmetric models using Planck
data only (lollipop+PlanckTT). Then we introduce the VHL
data and discuss additional constraints from the kSZ amplitude.
In each case, we also derive the constraints that follow from pos-
tulating that reionization should be completed at a redshift of 6
(see Sect. 2.1), i.e., when imposing the prior zend > 6.

5.1. Redshift-symmetric parameterization

We use the Planck CMB likelihoods in temperature (PlanckTT)
and polarization (lollipop) to derive constraints on ⇤CDM
parameters, including the reionization redshift zre and width �z
for a redshift-symmetric parameterization. Figure 10 shows (in
blue) the posterior on zre and �z after marginalization over the
other cosmological and nuisance parameters. As discussed in
Sect. 3, the large-scale polarized CMB anisotropies are almost
insensitive to the width �z of the tanh function. We thus recover
the degeneracy in the direction of �z. Imposing an additional
Gunn-Peterson constraint on the ionization fraction at very low

redshift can break this degeneracy. This is illustrated in Fig. 10,
where we show (in green) the results of the same analysis with
an additional prior zend > 6. In this case, we find �z < 1.3 at 95 %
CL, which corresponds to a reionization duration (zbeg � zend) of

�z < 4.6 (95 % CL). (13)

Fig. 10. Posterior distributions (in blue) of zre and �z for a
redshift-symmetric parameterization using the CMB likelihoods
in polarization and temperature (lollipop+PlanckTT). The
green contours and lines show the distribution after imposing
the additional prior zend > 6.

The posterior distribution of zre is shown in Fig. 10 after
marginalizing over �z, with and without the additional constraint
zend > 6. This suggests that the reionization process occurred at
redshift

zre = 8.5+1.0
�1.1 (uniform prior) , (14)

zre = 8.8+0.9
�0.9 (prior zend > 6) . (15)

This redshift is lower than the values derived previously
from WMAP-9 data, in combination with ACT and SPT
(Hinshaw et al. 2013), namely zre = 10.3 ± 1.1. It is
also lower than the value zre = 11.1 ± 1.1 derived in
Planck Collaboration XVI (2014), based on Planck 2013 data
and the WMAP-9 polarization likelihood.

Although the uncertainty is now smaller, this new
reionization redshift value is entirely consistent with the
Planck 2015 results (Planck Collaboration XIII 2016) for
PlanckTT+lowP alone, zre = 9.9+1.8

�1.6 or in combina-
tion with other data sets, zre = 8.8+1.3

�1.2 (specifically for
PlanckTT+lowP+lensing+BAO) estimated with �z fixed to 0.5.
The constraint from lollipop+PlanckTT when fixing �z to 0.5
is zre = 8.2+1.0

�1.2. This slightly lower value (compared to the one
obtained when letting the reionization width be free) is explained
by the shape of the degeneracy surface. Allowing for larger du-
ration when keeping the same value of ⌧ pushes towards higher

9
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Fig. 7. Power spectrum templates for the kSZ e↵ect. The dif-
ferent lines correspond to: homogeneous reionization as used in
Planck Collaboration XI (2016) (dark blue), based on Trac et al.
(2011); “CSF” (light blue), which is a homogeneous reionization
model from Shaw et al. (2012); Patchy (green dashed) based on
patchy reionization model from Battaglia et al. (2013); and the
sum of CSF and patchy (red).

The kSZ power spectrum amplitude does depend on the cos-
mological parameters (Shaw et al. 2012; Zahn et al. 2012). To
deal with this, we adopt the scalings from Shaw et al. (2012),
which gives the amplitude at ` = 3000, AkSZ ⌘ DkSZ

`=3000:

AkSZ /
 

h
0.7

!1.7 ✓ �8

0.8

◆4.5
 
⌦b

0.045

!2.1  
0.27
⌦m

!0.44  
0.96
ns

!0.19

. (9)

The amplitude of the kSZ power spectrum at ` = 3000 for
the fiducial cosmology, AkSZ is another observable of the reion-
ization history that can be probed by CMB data. Its scalings
with the reionization redshift and the duration of the EoR can
be extracted from simulations. We assume for the patchy and
homogeneous kSZ e↵ect, the scalings of Battaglia et al. (2013)
and Shaw et al. (2012), repsectively. For the Planck base⇤CDM
cosmology given in Sect. 2.2, we find (in µK2):

Ah
kSZ = 2.02 ⇥

✓ ⌧

0.076

◆0.44
; (10)

Ap
kSZ = 2.03 ⇥

" 
1 + zre

11

!
� 0.12

# ✓ z25 % � z75 %

1.05

◆0.51
. (11)

For the measured value ⌧ = 0.058 ± 0.012, Eqs. (10) and
(11) give amplitudes for the homogeneous and patchy reioniza-
tion contributions of Ah

kSZ = 1.79 µK2 and Ap
kSZ = 1.01 µK2,

respectively.
For the multipole range of Planck, the amplitude of the

kSZ spectrum is dominated by other foregrounds, including
Galactic dust, point sources, CIB fluctuations, and the tSZ e↵ect.
Moreover, the Planck signal-to-noise ratio decreases rapidly
above ` = 2000, where the kSZ signal is maximal. This is
why we cannot constrain the kSZ amplitude using Planck data
alone. Combining with additional data at higher multipoles helps
to disentangle the di↵erent foregrounds. We explicitly use the
band powers from SPT (George et al. 2015) and ACT (Das et al.
2014), covering the multipole range up to ` = 13 000.

Despite our best e↵orts to account for the details, the kSZ
amplitude is weak and there are large uncertainties in the mod-
els (both homogeneous and patchy). Moreover, there are cor-
relations between the di↵erent foreground components, coming
both from the astrophysics (we use the same halo model to de-
rive the power spectra for the CIB and for CIB⇥tSZ as the one
used for the kSZ e↵ect) and from the adjustments in the data.
We carried out several tests to check the robustness of the con-
straints on AkSZ with respect to the template used for the CIB,
CIB⇥tSZ, and kSZ contributions. In particular, the CIB⇥tSZ
power spectrum amplitude is strongly anti-correlated with the
kSZ amplitude and poorly constrained by the CMB data. As a
consequence, if we neglect the CIB⇥tSZ contribution, the kSZ
amplitude measured in CMB data is substantially reduced, lead-
ing to an upper limit much lower than the one derived when in-
cluding the CIB⇥tSZ correlation. In the following discussion we
consider only the more realistic case (and thus more conservative
in terms of constraints on AkSZ) where the CIB⇥tSZ correlation
contributes to the high-` signal.

Fig. 8. 68 % and 95 % confidence intervals on the reionization
optical depth, ⌧, and the amplitude of the kinetic SZ e↵ect, AkSZ,
from the CMB (lollipop+PlanckTT+VHL).

We combine the Planck likelihoods in TT (PlanckTT) and
from low-` EE polarization (lollipop) with the very high-`
data from ACT and SPT (VHL), assuming a redshift-symmetric
parameterization of the reionization. Figure 8 shows the 2D pos-
terior distribution for ⌧ and AkSZ after marginalization over the
other cosmological and nuisance parameters.

Figure 9 compares the constraints on the kSZ power at
` = 3000, AkSZ, obtained for three di↵erent kSZ templates: the
“homogeneous” reionization template from Trac et al. (2011),
which neglects contributions from inhomogeneous reionization;
a more complex model “CSF & patchy,” including both homo-
geneous and patchy contributions; and a pure “patchy” template
from Battaglia et al. (2013). We find very similar upper limits on
AkSZ, even in the case of pure patchy reionization.

Using the “CSF & patchy” model, the upper limit is

AkSZ < 2.6 µK2 (95 % CL) . (12)

Compared to Planck 2013 results, the maximum likeli-
hood value AkSZ = 5.3+2.8

�1.9 µK
2 (PlanckTT+WP+highL,

Planck Collaboration XVI 2014) is reduced to an upper limit in

8
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Fig. 18. Constraints on ionization fraction during reionization. The allowed models, in terms of zre and �z, translate into an allowed
region in xe(z) (68 % and 95 % in dark blue and light blue, respectively), including the zend > 6 prior here. Left: Constraints from
CMB data using a redshift-symmetric function (xe(z) as a hyperbolic tangent with �z = 0.5). Centre: Constraints from CMB data
using a redshift-asymmetric parameterization (xe(z) as a power law). Right: Constraints from CMB data using a redshift-symmetric
parameterization with additional constraints from the kSZ e↵ect.

function xe(z) with �z = 0.5), a measurement of the Thomson
optical depth

⌧ = 0.058 ± 0.012 (lollipop+PlanckTT), (24)

which is significantly more accurate than previous measure-
ments. Thanks to the relatively high signal-to-noise ratio of the
low-` polarization signal, the combination with lensing or data
from high resolution CMB anisotropy experiments (ACT and
SPT) does not bring much additional constraining power. The
impact on other ⇤CDM parameters is only significant for the
amplitude of the initial scalar power spectrum As and (to a lesser
extent) on its tilt ns. Other parameters are very stable compared
to the Planck 2015 results.

Using Planck data, we have derived constraints on two mod-
els for the reionization history xe(z) that are commonly used in
the literature: a redshift-symmetric form using a hyperbolic tan-
gent transition function; and a redshift-asymmetric form param-
eterized by a power law. We have also investigated the e↵ect
of imposing the condition that the reionization is completed by
z = 6.

Allowing the ionization fraction shape and duration to vary,
we have found very compatible best-fit estimates for the opti-
cal depth (0.059 and 0.060 for the symmetric and asymmetric
model, respectively), showing that the CMB is indeed more sen-
sitive to the value of the optical depth than to the exact shape of
the reionization history. However, the value of the reionization
redshift does slightly depend on the model considered. In the
case of a symmetric parameterization, we have found slightly
larger estimates of zre than in the case of instantaneous reioniza-
tion. This can be understood through the shape of the degeneracy
surface between the reionization parameters. For an asymmetric
parameterization, zre is smaller, due to the fact that xe(z) changes
more rapidly at the end of reionization than the beginning. We
specifically find:

zre = 8.8 ± 0.9 (redshift-symmetric) ; (25)
zre = 8.5 ± 0.9 (redshift-asymmetric) . (26)

Assuming two di↵erent parameterizations of the reionization
history shows how much results on e↵ective parameters (like
the redshift of reionization or its duration) are sensitive to the
assumption of the reionization history shape. The best models of
symmetric and asymmetric parameterization give similar values

for ⌧, and provide reionization redshifts which di↵er by less than
0.4�. Constraints on the limits of possible early reionization are
similar, leading to 10 % reionization levels at around z = 10.

To derive constraints on the duration of the reionization
epoch, we combined CMB data with measurements of the ampli-
tude of the kSZ e↵ect. In the case of a redshift-symmetric model,
we found

�z < 2.8 (95 % CL), (27)

using the additional constraint that the Universe is entirely reion-
ized at redshift 6 (i.e., zend > 6).

Our final constraints on the reionization history are plot-
ted in Fig. 18 for each of the aforementioned cases, i.e., the
redshift-symmetric and redshift-asymmetric models, using only
the CMB, and the redshift-symmetric case using CMB+kSZ (all
with prior zend > 6). Plotted this way, the constraints are not
very tight and are still fairly model dependent. Given the low
value of ⌧ as measured now by Planck, the CMB is not able
to give tight constraints on details of the reionization history.
However, the Planck data suggest that an early onset of reion-
ization is disfavoured. In particular, in all cases, we found that
the Universe was less than 10 % ionized for redshift z > 10.
Furthermore, comparisons with other tracers of the ionization
history show that our new result on the optical depth elimi-
nates most of the tension between CMB-based analyses and
constraints from other astrophysical data. Additional sources of
reionization, non-standard early galaxies, or significantly evolv-
ing escape fractions or clumping factors, are thus not needed.

Ongoing and future experiments like LOFAR, MWA, and
SKA, aimed at measuring the redshifted 21-cm signal from neu-
tral hydrogen during the EoR, should be able to probe reioniza-
tion directly and measure its redshift and duration to high ac-
curacy. Moreover, since reionization appears to happen at red-
shifts below 10, experiments measuring the global emission of
the 21-m line over the sky (e.g., EDGES, Bowman & Rogers
2010, LEDA, Greenhill & Bernardi 2012, DARE, Burns et al.
2012), NenuFAR, Zarka et al. 2012, SARAS, Patra et al. 2013,
SCI-HI, Voytek et al. 2014, ZEBRA, Mahesh et al. 2014, and
BIGHORNS, Sokolowski et al. 2015) will also be able to derive
very competitive constraints on the models (e.g., Liu et al. 2015;
Fialkov & Loeb 2016).

Acknowledgements. The Planck Collaboration acknowledges the support of:
ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF
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Fig. 18. Constraints on ionization fraction during reionization. The allowed models, in terms of zre and �z, translate into an allowed
region in xe(z) (68 % and 95 % in dark blue and light blue, respectively), including the zend > 6 prior here. Left: Constraints from
CMB data using a redshift-symmetric function (xe(z) as a hyperbolic tangent with �z = 0.5). Centre: Constraints from CMB data
using a redshift-asymmetric parameterization (xe(z) as a power law). Right: Constraints from CMB data using a redshift-symmetric
parameterization with additional constraints from the kSZ e↵ect.

function xe(z) with �z = 0.5), a measurement of the Thomson
optical depth

⌧ = 0.058 ± 0.012 (lollipop+PlanckTT), (24)

which is significantly more accurate than previous measure-
ments. Thanks to the relatively high signal-to-noise ratio of the
low-` polarization signal, the combination with lensing or data
from high resolution CMB anisotropy experiments (ACT and
SPT) does not bring much additional constraining power. The
impact on other ⇤CDM parameters is only significant for the
amplitude of the initial scalar power spectrum As and (to a lesser
extent) on its tilt ns. Other parameters are very stable compared
to the Planck 2015 results.

Using Planck data, we have derived constraints on two mod-
els for the reionization history xe(z) that are commonly used in
the literature: a redshift-symmetric form using a hyperbolic tan-
gent transition function; and a redshift-asymmetric form param-
eterized by a power law. We have also investigated the e↵ect
of imposing the condition that the reionization is completed by
z = 6.

Allowing the ionization fraction shape and duration to vary,
we have found very compatible best-fit estimates for the opti-
cal depth (0.059 and 0.060 for the symmetric and asymmetric
model, respectively), showing that the CMB is indeed more sen-
sitive to the value of the optical depth than to the exact shape of
the reionization history. However, the value of the reionization
redshift does slightly depend on the model considered. In the
case of a symmetric parameterization, we have found slightly
larger estimates of zre than in the case of instantaneous reioniza-
tion. This can be understood through the shape of the degeneracy
surface between the reionization parameters. For an asymmetric
parameterization, zre is smaller, due to the fact that xe(z) changes
more rapidly at the end of reionization than the beginning. We
specifically find:

zre = 8.8 ± 0.9 (redshift-symmetric) ; (25)
zre = 8.5 ± 0.9 (redshift-asymmetric) . (26)

Assuming two di↵erent parameterizations of the reionization
history shows how much results on e↵ective parameters (like
the redshift of reionization or its duration) are sensitive to the
assumption of the reionization history shape. The best models of
symmetric and asymmetric parameterization give similar values

for ⌧, and provide reionization redshifts which di↵er by less than
0.4�. Constraints on the limits of possible early reionization are
similar, leading to 10 % reionization levels at around z = 10.

To derive constraints on the duration of the reionization
epoch, we combined CMB data with measurements of the ampli-
tude of the kSZ e↵ect. In the case of a redshift-symmetric model,
we found

�z < 2.8 (95 % CL), (27)

using the additional constraint that the Universe is entirely reion-
ized at redshift 6 (i.e., zend > 6).

Our final constraints on the reionization history are plot-
ted in Fig. 18 for each of the aforementioned cases, i.e., the
redshift-symmetric and redshift-asymmetric models, using only
the CMB, and the redshift-symmetric case using CMB+kSZ (all
with prior zend > 6). Plotted this way, the constraints are not
very tight and are still fairly model dependent. Given the low
value of ⌧ as measured now by Planck, the CMB is not able
to give tight constraints on details of the reionization history.
However, the Planck data suggest that an early onset of reion-
ization is disfavoured. In particular, in all cases, we found that
the Universe was less than 10 % ionized for redshift z > 10.
Furthermore, comparisons with other tracers of the ionization
history show that our new result on the optical depth elimi-
nates most of the tension between CMB-based analyses and
constraints from other astrophysical data. Additional sources of
reionization, non-standard early galaxies, or significantly evolv-
ing escape fractions or clumping factors, are thus not needed.

Ongoing and future experiments like LOFAR, MWA, and
SKA, aimed at measuring the redshifted 21-cm signal from neu-
tral hydrogen during the EoR, should be able to probe reioniza-
tion directly and measure its redshift and duration to high ac-
curacy. Moreover, since reionization appears to happen at red-
shifts below 10, experiments measuring the global emission of
the 21-m line over the sky (e.g., EDGES, Bowman & Rogers
2010, LEDA, Greenhill & Bernardi 2012, DARE, Burns et al.
2012), NenuFAR, Zarka et al. 2012, SARAS, Patra et al. 2013,
SCI-HI, Voytek et al. 2014, ZEBRA, Mahesh et al. 2014, and
BIGHORNS, Sokolowski et al. 2015) will also be able to derive
very competitive constraints on the models (e.g., Liu et al. 2015;
Fialkov & Loeb 2016).
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assumed, as discussed by Zahn et al. (2012) and George et al.
(2015).

As described in Sect. 4.2, the amplitude of the kSZ power
primarily depends on the duration of reionization, while the
epoch is essentially constrained by the optical depth. Using the
2D distribution for ⌧ and AkSZ, as measured by Planck in combi-
nation with very high-` temperature data (Fig. 8), we derive a 2D
likelihood function for zre and �z. We can then sample the reion-
ization parameters (the epoch zre and duration �z of the EoR),
compute the associated optical depth and kSZ power and derive
constraints based on the 2D likelihood. The allowed models in
terms of zre and �z are shown in Fig. 14 (in blue). We also plot
(in green) the same constraints with the additional prior zend > 6.

Fig. 14. Posterior distributions on the duration �z and the red-
shift zre of reionization from the combination of CMB polariza-
tion and kSZ e↵ect constraints without (blue) and with (green)
the prior zend > 6.

As discussed in Sect. 4.2, the measurement of the total kSZ
power constrains the amplitude of patchy reionization, resulting
in an upper limit of

�z < 4.8 (95 % CL, uniform prior) , (20)
�z < 2.8 (95 % CL, prior zend > 6) . (21)

This is compatible with the constraints from George et al.
(2015), where an upper limit was quoted of z20 % � z99 % < 5.4
at 95 % CL. Our 95 % CL upper limits on this same quantity are
4.3 and 2.5 without and with the prior on zend, respectively.

For the reionization redshift, we find

zre = 7.2+1.2
�1.2 (uniform prior) , (22)

zre = 7.8+1.0
�0.8 (prior zend > 6) , (23)

which is compatible within 1� with the results from CMB
Planck data alone without the kSZ constraint (Sect. 5.1).

The distributions of zend and zbeg are plotted in Fig. 15.
Within the redshift-symmetric parameterization, we obtain
zbeg = 8.1+1.1

�0.9 (with the prior on zend).

Fig. 15. Posterior distributions of zend and zbeg using the redshift-
symmetric parameterization, combining Planck and VHL data,
and using information from the kSZ amplitude, without (blue)
and with (green) the prior zend > 6.

Adding information from the kSZ amplitude allows for
somewhat tighter constraints to be placed on the reionization du-
ration �z and the beginning of reionization (corresponding to the
10 % ionization limit) zbeg. However, as discussed in Sect. 4.2,
those results are very sensitive to details of the simulations used
to predict both the shape and the parameter dependences of the
kSZ template in the di↵erent reionization scenarios (patchy or
homogeneous).

6. Discussion

The CMB has long held the promise of measuring the Thomson
optical depth in order to derive constraints on the reionization
history of the Universe. Despite its importance, this constraint is
fundamentally limited by cosmic variance in polarization and is
further challenged by foregrounds and systematic e↵ects. The
first results, from WMAP, gave ⌧ = 0.17 ± 0.04, suggesting
a reionization redshift between 11 and 30 (Kogut et al. 2003).
This was revised in the final 9-year WMAP results to a cen-
tral value of ⌧ = 0.084 (Hinshaw et al. 2013), which, in the in-
stantaneous reionization model, implies zre = 10.4. However,
with the context of the same model, the Planck 2015 results
(Planck Collaboration XIII 2016), either alone (zre = 9.9+1.8

�1.6)
or in combination with other data sets (zre = 8.8+1.3

�1.2), showed
that the reionization redshift was smaller. The main result we
present here, zre = 8.2+1.0

�1.2, further confirms that reionization oc-
curred rather late, leaving little room for any significant ioniza-
tion at z >⇠ 15. This is consistent with what is suggested by other
reionization probes, which we now discuss (for reviews, see e.g.,
Becker et al. 2015; McQuinn 2015).

The transition from neutral to ionized gas is constrained by
absorption spectra of very distant quasars and gamma ray bursts
(GRBs), revealing neutral hydrogen in intergalactic clouds. They
show, through the Gunn-Peterson e↵ect, that the di↵use gas
in the Universe is mostly ionized up to a redshift of about
6 (Fan et al. 2006a). Given the decline in their abundance be-
yond redshift z ' 6, quasars and other active galactic nu-
clei (AGN) cannot be major contributors to the early stages
of reionization (e.g., Willott et al. 2010; Fontanot et al. 2012,
but see Madau & Haardt, 2015, for an alternative, AGN-only
model). A faint AGN population can produce significant pho-
toionization rates at redshifts of 4–6.5, consistent with the ob-
served highly ionized IGM in the Ly-↵ forest of high-z quasar
spectra (Giallongo et al. 2015). Star-forming galaxies at red-
shifts z >⇠ 6 have therefore been postulated to be the most
likely sources of early reionization, and their time-dependent
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Fig. 9. Constraints on the kSZ amplitude at ` = 3000 using
lollipop+PlanckTT+VHL likelihoods. The three cases corre-
spond to di↵erent kSZ templates.

this new analysis. The data presented here provide the best con-
straint to date on the kSZ power and is a factor of 2 lower than
the limit reported in George et al. (2015). Our limit is certainly
not in tension with the homogeneous kSZ template, which pre-
dicts AkSZ = 1.79 µK2. However, it does not leave much room
for any additional kSZ power coming from patchy reionization.

Consistent with George et al. (2015), we find the total kSZ
power to be stable against varying tSZ and CIB templates. We
also find very little dependence on the choice of the kSZ tem-
plate (Fig. 9). This confirms that there is only a modest amount
of information in the angular shape of the kSZ signal with the
current data.

5. Constraints on the reionization history

We now interpret our measurements of the reionization observ-
ables in terms of constraint on the reionization history. We
mainly focus on the determination of the reionization redshift
zre and its duration �z = zbeg � zend. We show only the results
for �z greater than unity, which corresponds to approximatively
90 Myr at redshift z = 8. We first begin by looking at constraints
on the EoR for symmetric and asymmetric models using Planck
data only (lollipop+PlanckTT). Then we introduce the VHL
data and discuss additional constraints from the kSZ amplitude.
In each case, we also derive the constraints that follow from pos-
tulating that reionization should be completed at a redshift of 6
(see Sect. 2.1), i.e., when imposing the prior zend > 6.

5.1. Redshift-symmetric parameterization

We use the Planck CMB likelihoods in temperature (PlanckTT)
and polarization (lollipop) to derive constraints on ⇤CDM
parameters, including the reionization redshift zre and width �z
for a redshift-symmetric parameterization. Figure 10 shows (in
blue) the posterior on zre and �z after marginalization over the
other cosmological and nuisance parameters. As discussed in
Sect. 3, the large-scale polarized CMB anisotropies are almost
insensitive to the width �z of the tanh function. We thus recover
the degeneracy in the direction of �z. Imposing an additional
Gunn-Peterson constraint on the ionization fraction at very low

redshift can break this degeneracy. This is illustrated in Fig. 10,
where we show (in green) the results of the same analysis with
an additional prior zend > 6. In this case, we find �z < 1.3 at 95 %
CL, which corresponds to a reionization duration (zbeg � zend) of

�z < 4.6 (95 % CL). (13)

Fig. 10. Posterior distributions (in blue) of zre and �z for a
redshift-symmetric parameterization using the CMB likelihoods
in polarization and temperature (lollipop+PlanckTT). The
green contours and lines show the distribution after imposing
the additional prior zend > 6.

The posterior distribution of zre is shown in Fig. 10 after
marginalizing over �z, with and without the additional constraint
zend > 6. This suggests that the reionization process occurred at
redshift

zre = 8.5+1.0
�1.1 (uniform prior) , (14)

zre = 8.8+0.9
�0.9 (prior zend > 6) . (15)

This redshift is lower than the values derived previously
from WMAP-9 data, in combination with ACT and SPT
(Hinshaw et al. 2013), namely zre = 10.3 ± 1.1. It is
also lower than the value zre = 11.1 ± 1.1 derived in
Planck Collaboration XVI (2014), based on Planck 2013 data
and the WMAP-9 polarization likelihood.

Although the uncertainty is now smaller, this new
reionization redshift value is entirely consistent with the
Planck 2015 results (Planck Collaboration XIII 2016) for
PlanckTT+lowP alone, zre = 9.9+1.8

�1.6 or in combina-
tion with other data sets, zre = 8.8+1.3

�1.2 (specifically for
PlanckTT+lowP+lensing+BAO) estimated with �z fixed to 0.5.
The constraint from lollipop+PlanckTT when fixing �z to 0.5
is zre = 8.2+1.0

�1.2. This slightly lower value (compared to the one
obtained when letting the reionization width be free) is explained
by the shape of the degeneracy surface. Allowing for larger du-
ration when keeping the same value of ⌧ pushes towards higher
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erage ionized fraction of the gas in the Universe rapidly in-
creased until hydrogen became fully ionized. Empirical, ana-
lytic, and numerical models of the reionization process have
highlighted many pieces of the essential physics that led to the
birth to the ionized intergalactic medium (IGM) at late times
(Couchman & Rees 1986; Miralda-Escude & Ostriker 1990;
Meiksin & Madau 1993; Aghanim et al. 1996; Gruzinov & Hu
1998; Madau et al. 1999; Gnedin 2000; Barkana & Loeb 2001;
Ciardi et al. 2003; Furlanetto et al. 2004; Pritchard et al. 2010;
Pandolfi et al. 2011; Mitra et al. 2011; Iliev et al. 2014). Such
studies provide predictions on the various reionization observ-
ables, including those associated with the CMB.

The most common physical quantity used to characterize
reionization is the Thomson scattering optical depth defined as

⌧(z) =
Z t0

t(z)
ne�T cdt0, (1)

where ne is the number density of free electrons at time t0, �T
is the Thomson scattering cross-section, t0 is the time today, t(z)
is the time at redshift z, and we can use the Friedmann equa-
tion to convert dt to dz. The reionization history is conveniently
expressed in terms of the ionized fraction xe(z) ⌘ ne(z)/nH(z)
where nH(z) is the hydrogen number density.

In this study, we define the redshift of reionization, zre ⌘
z50 %, as the redshift at which xe = 0.5 ⇥ f . Here the normaliza-
tion, f = 1 + fHe = 1 + nHe/nH, takes into account electrons in-
jected into the IGM by the first ionization of helium (correspond-
ing to 25 eV), which is assumed to happen roughly at the same
time as hydrogen reionization. We define the beginning and the
end of the EoR by the redshifts zbeg ⌘ z10 % and zend ⌘ z99 % at
which xe = 0.1⇥ f and 0.99⇥ f , respectively. The duration of the
EoR is then defined as �z = z10 % � z99 %.2 Moreover, to ensure
that the Universe is fully reionized at low redshift, we impose
the condition that the EoR is completed before the second he-
lium reionization phase (corresponding to 54 eV), noting that it
is commonly assumed that quasars are necessary to produce the
hard photons needed to ionize helium. To be explicit about how
we treat the lowest redshifts we assume that the full reioniza-
tion of helium happens fairly sharply at zHe = 3.5 (Becker et al.
2011), following a transition of hyperbolic tangent shape with
width �z = 0.5. While there is still some debate on whether he-
lium reionization could be inhomogeneous and extended (and
thus have an early start, Worseck et al. 2014), we have checked
that varying the helium reionization redshift between 2.5 and 4.5
changes the total optical depth by less than 1 %.

The simplest and most widely-used parameterizations de-
scribes the EoR as a step-like transition between an essentially
vanishing ionized fraction3 xe at early times, to a value of unity
at low redshifts. When calculating the e↵ect on anisotropies it is
necessary to give a non-zero width to the transition, and it can
be modelled using a tanh function (Lewis 2008):

xe(z) =
f
2

"
1 + tanh

 
y � yre

�y

!#
, (2)

where y = (1 + z)3/2 and �y = 3
2 (1 + z)1/2�z. The key parameters

are thus zre, which measures the redshift at which the ionized

2The reason this is not defined symmetrically is that in practice we
have tighter constraints on the end of reionization than on the beginning.

3The ionized fraction is actually matched to the relic free electron
density from recombination, calculated using recfast Seager et al.
(2000).

fraction reaches half its maximum and a width �z. The tanh pa-
rameterization of the EoR transition allows us to compute the op-
tical depth of Eq. (1) for a one-stage almost redshift-symmetric4

reionization transition, where the redshift interval between the
onset of the reionization process and its half completion is (by
construction) equal to the interval between half completion and
full completion. In this parameterization, the optical depth is
mainly determined by zre and almost degenerate with the width
�z. This is the model used in the Planck 2013 and 2015 cosmo-
logical papers, for which we have fixed �z = 0.5 (corresponding
to �z = 1.73). In this case, we usually talk about “instantaneous”
reionization.

A redshift-asymmetric parameterization is a better, more
flexible description of numerical simulations of the reionization
process (e.g., Ahn et al. 2012; Park et al. 2013; Douspis et al.
2015). A function with this behaviour is also suggested
by the constraints from ionizing background measurements
of star-forming galaxies and from low-redshift line-of-sight
probes such as quasars, Lyman-↵ emitters, or �-ray bursts
(Faisst et al. 2014; Chornock et al. 2014; Ishigaki et al. 2015;
Robertson et al. 2015; Bouwens et al. 2015). The two simplest
choices of redshift-asymmetric parameterizations are polyno-
mial or exponential functions of redshift (Douspis et al. 2015).
These two parameterizations are in fact very similar, and we
adopt here a power law defined by two parameters: the redshift at
which reionization ends (zend); and the exponent ↵. Specifically
we have

xe(z) =

8>>><
>>>:

f for z < zend,

f
✓

zearly�z
zearly�zend

◆↵
for z > zend.

(3)

In the following, we fix zearly = 20, the redshift around which
the first emitting sources form, and at which we smoothly match
xe(z) to the ionized fraction left over from recombination. We
checked that our results are not sensitive to the precise value of
zearly, as long as it is not dramatically di↵erent.

Non-parametric reconstructions of the ionization fraction
have also been proposed to probe the reionization history. Such
methods are based on exploring reionization parameters in bins
of redshift (Lewis et al. 2006). They should be particularly use-
ful for investigating exotic reionization histories, e.g., double
reionization Cen (2003). However, the CMB large-scale (` <⇠
10) polarization anisotropies are mainly sensitive to the over-
all value of the optical depth, which determines the ampli-
tude of the reionization bump in the EE power spectrum (see
Fig. 3). We have estimated the impact on CEE

` for the two dif-
ferent models (tanh and power law) having the same ⌧ = 0.06
and found di↵erences of less than 4 % for ` < 10. Even for
a double reionization model, Fig. 4 shows that the impact on
CEE
` is quite weak, given the actual measured value of ⌧, and

cannot be distinguished relative to the cosmic variance spread
(i.e., even for a full-sky experiment). We also checked that
Planck data do not allow for model-independent reconstruc-
tion of xe in redshift bins. Principal component analysis has
been proposed as an explicit approach to try to capture the de-
tails of the reionization history in a small set of parameters
(Hu & Holder 2003; Mortonson & Hu 2008). Although these
methods are generally considered to be non-parametric, they are
in fact based on a description of xe(z) in bins of redshift, ex-

4For convenience, we will refer to this parameterization as “redshift
symmetric” in the rest of the paper, even although it is actually symmet-
ric in y rather than z. The asymmetry is maximum in the instantaneous
case, but the di↵erence in xe values around, for example, zre = 8 ± 1, is
less than 1 %.
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Figure 9. Fraction of LBGs that display Lyα in emission at an EW ! 25 Å,
plotted as a function of redshift. The values at z = 7 and 8 reflect differential
measurements with the data at z = 6, as described in the text. Thus, these data
points and errors are simply the convolution of the xLyα pdf at z = 6 and the
transmission fraction pdf at z = 7 and 8.
(A color version of this figure is available in the online journal.)

in Schenker et al. (2012) appropriate for patchy reionization. In
this model, the IGM is partially opaque, such that Lyα escapes to
the observer unattenuated from a fraction, f, of galaxies, while it
is completely extinguished by the IGM in a fraction 1−f . Given
the histogram of expected detections and the number actually
observed, we infer a probability distribution for this transmission
fraction, f. Formally, this involves the use of Bayes’s theorem,

p(f |Nobs) = p(Nobs|f )p(f )
∫ 1

0 p(Nobs|f ) df
, (7)

where p(Nobs|f = 1) is derived from our Monte Carlo simula-
tions and shown in Figure 8. In the case where f is not equal to
one, we compute p(Nobs|f ̸= 1) by modifying the Monte Carlo
simulations such that a fraction of emission, 1 − f , is extin-
guished. To compute p(f |Nobs), the full probability distribution
for f, we substitute the number of galaxies observed with Lyα
emission at >5σ and evaluate the right-hand side of the above
equation. Our f and the ϵp used in Treu et al. (2012) represent
the same quantity, though they use a more involved framework
that takes into account the entire spectrum and observed line
flux, while we concentrate only on the number of 5σ detections.

At z ∼ 7, we find f = 0.52+0.12
−0.13, and at z ∼ 8, a 1σ upper

limit of f < 0.20. The full results can be found in Table 2 and
are plotted along with the lower redshift data on xLyα in Figure 9.

Discussing the uncertainties in the transformation from trans-
mission fraction to xH i is beyond the scope of the present paper.
However, clearly this conversion is dependent on a number of
physical parameters, some internal to the galaxy, and others
from the IGM state itself. These include the velocity offset of
Lyα from the galaxy’s systemic velocity (e.g., Hashimoto et al.
2013; Schenker et al. 2013a), the ionizing photon escape frac-
tion (Dijkstra et al. 2014), and the possible presence of optically
thick absorption systems (Bolton & Haehnelt 2013). Until the
theoretical models converge and/or observations of these key
quantities are available, absolute measures of the neutral frac-
tion will still be subject to systematic errors. Nonetheless, we
have demonstrated substantial observational progress with our
new survey and improved methodology, reducing one of the key

systematic errors. We use the models of McQuinn et al. (2007),
which calculated the visibility of Lyα emitters in a 186 Mpc side
length cosmological simulation as a function of xH i. Applying
these to our visibility data to provide an estimate of xH i, we find
xH i = 0.39+0.08

−0.09 at z ∼ 7 and xH i > 0.64 at z ∼ 8.

6. CONCLUSIONS

Using our sample of 451 3 < z < 6 spectroscopically
followed-up LBGs, we demonstrate an improved correlation
between the ultraviolet continuum slope of a galaxy, β, and its
Lyα emission strength. Given the availability of deep WFC3
photometry for both the GOODS-N and GOODS-S fields, this
progress follows measurements for many individual galaxies
in this redshift range, rather than via stacked or averaged UV
slopes, as in earlier work (Shapley et al. 2003; Stark et al. 2010).

We demonstrate that this correlation with the presence of Lyα
is stronger and more physically motivated than that based on the
UV luminosity and thus provides a natural basis for an improved
model for the Lyα fraction test, now widely used to measure
the evolving neutrality of the z > 6.5 IGM. We demonstrate the
benefits of this new model using a new MOSFIRE spectroscopic
survey of 7 < z < 8 targets from the UDF 2012 catalog and
CLASH lensing survey and combine this with data at these
redshifts already published in the literature. As a result, we
present the implications of the most comprehensive search for
Lyα emission at z ≃ 8 to date, confirming once again important
evidence that cosmic reionization ended at redshifts z ≃ 6.5.

As a by-product, we also present a promising 4.0σ detection
of Lyα in a galaxy at z = 7.62, possibly the most distant
spectroscopically confirmed galaxy.

We thank the referee, whose comments significantly im-
proved the content of this manuscript. We thank Chuck Stei-
del and Ian McLain for their sterling efforts in developing
the highly successful MOSFIRE instrument. We also wish to
recognize and acknowledge the very significant cultural role
and reverence that the summit of Mauna Kea has always had
within the indigenous Hawaiian community. We are most fortu-
nate to have the opportunity to conduct observations from this
mountain.

APPENDIX A

MODELS FOR p(EW|β)

The maximum likelihoods inferred from each of the four
distributions are noted in Table 3. These results demonstrate that
the lognormal distribution provides the best fit to the available
data—its likelihood surpasses that of any other model by two
orders of magnitude. Thus, we use this distribution as the basis
for the more general form of p(EW|β) we consider next.

APPENDIX B

RESULTS OF FULL MODELING PROCEDURE

For reference, and so that they are available for use in
future work, we list here the final values for our generalized
lognormal fit to the EWLyα distribution at 3 < z < 6. They
are µa = 2.875+0.125

−0.25 , µs = −1.125 ± 0.25, σ = 1.3 ± 0.1,
and Aem = 1.0+0.0

−0.1. We also provide a plot of the posterior
probability distribution in Figure 10, so the reader is able to
appreciate the sometimes non-negligible covariances between
parameters.
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Figure 9. Fraction of LBGs that display Lyα in emission at an EW ! 25 Å,
plotted as a function of redshift. The values at z = 7 and 8 reflect differential
measurements with the data at z = 6, as described in the text. Thus, these data
points and errors are simply the convolution of the xLyα pdf at z = 6 and the
transmission fraction pdf at z = 7 and 8.
(A color version of this figure is available in the online journal.)
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flux, while we concentrate only on the number of 5σ detections.
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model for the Lyα fraction test, now widely used to measure
the evolving neutrality of the z > 6.5 IGM. We demonstrate the
benefits of this new model using a new MOSFIRE spectroscopic
survey of 7 < z < 8 targets from the UDF 2012 catalog and
CLASH lensing survey and combine this with data at these
redshifts already published in the literature. As a result, we
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evidence that cosmic reionization ended at redshifts z ≃ 6.5.

As a by-product, we also present a promising 4.0σ detection
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Fig. 8. Same as the right panel of Figure 6, but with the reionization model

predictions for comparisons. Top : The solid lines represent the McQuinn

et al.’s (2007) models of z = 6.6 LAEs with a dark-matter halo mass of

3× 1010M⊙. From bottom to top lines, neutral hydrogen fractions of the

IGM are xHI = 0.0, 0.3, 0.5, and 0.8. Bottom : The ticks at the right-hand

side indicate bias values predicted by Furlanetto et al.’s (2006) models (see

text for more details).

Figure 7 indicates no significant rise of bias from z = 5.7 to

6.6 beyond the moderately small errors (i.e. by a factor of

∼ 20%). This result suggests that clustering of z = 6.6 LAEs

is not largely affected by the cosmic reionization effects, where

the bias evolution of the hosting dark-matter halos towards high-

z may be also involved. Based on this bias evolution result,

we place constraints on cosmic reionization parameters with

the help of theoretical models. We compare our observational

results with multiple theoretical models, because it is possible

that, at some levels, conclusions of theoretical models may de-

pend on the assumptions and the methods such as analytical,

semi-analytical, and numerical approaches. We thus try to avoid

model-dependent conclusions, and to obtain objective interpre-

tations for our observational results. Note that the arguments

below follow those of Ouchi et al. (2010) with our HSC cluster-

ing measurements.

In the top panel of Figure 8, we compare our z = 6.6 LAE

clustering measurements with those of theoretical predictions

(McQuinn et al. 2007; Furlanetto et al. 2006). The model of

McQuinn et al. (2007) is presented in the top panel of Figure

8. McQuinn et al. (2007) conduct radiative transfer simulations

predicting clustering of LAEs at z = 6.6. Their models assign

a Lyα flux to a dark-matter halo whose mass is beyond a mini-

mum dark-matter halo mass. Because the minimum dark-matter

halo mass of our LAEs at the post-reionization epoch (z = 5.7)

is estimated to be ∼ 1010M⊙ in Section 5.2, we choose one of

Fig. 9. Neutral hydrogen fraction xHI of the IGM as a function of redshift.

Note that the top and bottom panels are the same, but with an ordinate axis

of linear and log scales, respectively. The red filled square is the xHI esti-

mate obtained by our HSC LAE clustering analysis. The black filled square

and circle are the xHI estimates from the LAE LF evolution of Konno et

al. (2017) and Konno et al. (2014), respectively. The open circles are the

constraints at z = 6.6 obtained by Ouchi et al. (2010) from the evolution of

Lyα LF (left circle) and clustering (right circle), while the open diamond and

the open pentagon represent the upper limits from the Lyα LF evolution to

z = 6.5 given by Malhotra & Rhoads (2004) and Kashikawa et al. (2006).

Here, we add small offsets along redshift to the positions of the filled square,

the open circles, and the open diamond, avoiding overlapping symbols. The

filled hexagon and the filled pentagons show the constraints from a spectrum

of a GRB (Gallerani et al. 2008b) and statistics of QSO dark-gaps (Gallerani

et al. 2008a), respectively. The open hexagons are the constraints calcu-

lated from the Lyα damping wing absorption of GRBs at z = 6.3 (Totani et

al. 2006) and z = 5.9 (Totani et al. 2016). The filled diamonds indicate the

QSO Gunn-Peterson optical depth measurement results (Fan et al. 2006).

The triangle denotes the 1σ lower-limit of redshift obtained by Planck 2015

(Planck Collaboration et al. 2016) in the case of instantaneous reionization.

The solid line and the gray shade indicate the best-estimate and the uncer-

tainty of the xHI evolution (Ishigaki et al. 2017) that agrees the evolutions

of τe and ρUV with free parameters including the ionizing photon escape

fraction. The dotted, dashed, and dot-dashed lines are the evolution of xHI

for the reionizing sources down to the massive halos, the moderately mas-

sive halos, and the mini-halos, respectively, in the model of Choudhury et al.

(2008). The dashed double-dotted line indicates the prediction of the double

reionization model (Cen 2003).

Ouchi+ 2017

xHI<0.3 at z=6.6

Hypersuprime Cam (HSC)  
early data on Subaru
~14 deg2 (21.2 deg2)
959 (z=5.7), 873 (z=6.6) LAE

No indication of reionization
seen in clustering of LAEs

Evolution of number counts
also consistent with evolution
for 1011 MSol halos



Jonathan PritchardBologna 2017

Reionization summary
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Figure 20. (Left) Cosmic reionization history (neutral fraction xHI as a function of redshift) constrained by our z = 7 LAE survey and
previous studies using various probes. The lower limit on xHI at z = 7 obtained by our study based on the Lyα LF is indicated by the large
red filled circle. Meanwhile, the filled magenta square, circle, triangle and pentagon denote the neutral fractions estimated from the Lyα
LFs at z = 6.6 and 7.3 by Malhotra & Rhoads (2004), Kashikawa et al. (2011), Ouchi et al. (2010) and Konno et al. (2014), respectively.
The three z = 6.6 data points are slightly horizontally shifted from each other for clarity. The open diamond is the xHI constraint from the
analysis of the clustering of z = 6.6 LAEs by Ouchi et al. (2010). The blue filled triangle shows xHI constrained by QSO GP test by Fan et
al. (2006). The brown filled square denotes the constraints from the QSO dark Lyα forest pixels obtained by McGreer et al. (2011). The
green filled square, circle and triangle are the constraints based on GRB damping wing absorption by Totani et al. (2016), Totani et al.
(2006) and Greiner et al. (2009), respectively. The yellow filled square and circle indicate xHI estimated from sizes of QSO near zones by
Schroeder et al. (2013) and Bolton et al. (2011), respectively. The orange filled square and circle are xHI constrained from the fraction of
Lyα emitting LBGs at z ∼ 7 (the combined constraint from Stark et al. 2010; Pentericci et al. 2011, 2014; Schenker et al. 2012, 2014; Ono et
al. 2012; Treu et al. 2012; Caruana et al. 2012, 2014; Furusawa et al. 2016) and z ∼ 8 (Schenker et al. 2014). The blue and light-blue shaded
regions show the 68% and 95% allowed intervals of reionization history, respectively, constrained by the redshift-symmetric reionization
model and the analysis of the Planck pre-2016 CMB observations data by Planck Collaboration et al. (2016b). (Right) The same figure as
the left panel that also plots reionization histories inferred from the contribution from star-forming galaxies derived by the Robertson et
al. (2015) (R15) model and the cosmic ionizing emissivity by the Bouwens et al. (2015b) (B15) model. The white line and the pink shaded
regions indicates the R15 model and its 68% confidence interval. The gray and light-gray areas are the 68% and 95% confidence intervals
of the B15 model.

move the contaminations, the actual z = 7 Lyα LF will
exhibit more deficit, implying lower T IGM

Lyα,z=7/T
IGM
Lyα,z=5.7

and thus higher xz=7
HI .

On the other hand, Ouchi et al. (2010) and Konno et
al. (2014) used the Dijkstra et al. (2007) model that pre-
dicted a radius of ionized bubbles RHII at z = 6.5 as a
function of T IGM

Lyα,z=6.5/T
IGM
Lyα,z=5.7 and the Furlanetto et

al. (2006) model that relates the characteristic radius of
ionized bubbles at z = 6.5 to ionized fraction xi (i.e.,
xHI = 1 − xi) in order to translate their estimates of
T IGM
Lyα,z/T

IGM
Lyα,z=5.7 into xHI at z = 6.6 and 7.3. The Dijk-

stra et al. (2007) model provides their predictions with
two cases where the ionizing background is (or is not)
boosted by undetected surrounding sources. If we as-
sume that the characteristic size of ionized bubbles does
not change between z = 6.5 and z = 7 at a fixed xi and
also apply our estimate of T IGM

Lyα,z=7/T
IGM
Lyα,z=5.7 ≤ 0.6–

0.7 to the Dijkstra et al. (2007) model (Figure 6 of their
paper or Figure 20 of Ouchi et al. (2010)), the typical
radius of ionized bubbles at z = 7 would be RHII ! 13–
24 comoving Mpc and RHII ! 24–80 comoving Mpc for
the boost and the non-boost cases, respectively. Accord-
ing to the Furlanetto et al. (2006) model (the top panel
of Figure 1 in their paper), these ionized bubble radii
convert to xz=7

HI " 0.14–0.22 and xz=7
HI " 0.04–0.14, re-

spectively. Here, we use their model with z = 6.5 and the
halo mass threshold corresponding to a virial tempera-
ture 104 K where hydrogen line cooling becomes efficient.
Finally, another reionization model frequently used by

the previous LAE studies is the McQuinn et al. (2007)
model that predicts the cumulative Lyα LFs in the cases

of several different xi. Comparing our two types of cumu-
lative z = 7 Lyα LFs excluding (including) the faintest
bins from the middle (right) panel of Figure 9 with the
predicted Lyα LFs in Figure 4 of McQuinn et al. (2007),
we obtain xz=7

HI ≥ 0.0–0.38.
Combining all the xz=7

HI estimates above based on dif-
ferent reionization models, we conclude that the neutral
IGM fraction at z = 7 would be xz=7

HI " 0.4. As men-
tioned earlier in Section 1, Zheng et al. (2017) also con-
ducted their z = 6.9 LAE survey and constrained the
neutral fraction at z = 6.9 to be xz=6.9

HI ∼ 0.4–0.6 in the
similar way; i.e., comparing the z = 6.9 Lyα LF and the
decline of the Lyα luminosity density from z = 5.7 to 6.9
with the same reionization models we used (Santos 2004;
Furlanetto et al. 2006; Dijkstra et al. 2007; McQuinn et
al. 2007). As their z = 6.9 Lyα LF and luminosity den-
sity are based on photometric LAE candidates, which
could include some contaminations, their constraint on
xHI would be the lower limit and is consistent with ours.
Figure 20 shows cosmic reionization history (xHI as

a function of redshift) obtained by combining our xHI
estimate at z = 7 and constraints on xHI at z ∼ 5–8
from previous studies of LAEs at z = 6.6 and 7.3 (Lyα
LF and clustering), QSOs (GP optical depth, dark pix-
els and near zone), GRB damping wing absorptions and
LBG Lyα fractions. It suggests that xHI increases rapidly
from ∼ 10−4 to " 0.6 at z ∼ 6–8. Figure 20 also over-
plots the most recent constraint on reionization history
(the 68% and 95% confidence intervals) from the analy-
sis of the Planck 2016 CMB observations intermediate re-
sults assuming the redshift-symmetric reionization model
(Planck Collaboration et al. 2016b). Our xHI estimate at

Ota+ 2017

Ultimately need to combine all reionization constraints
e.g. Robertson+ (2015), Greig & Mesinger (2016), … many more  
 
Reionization histories typically very model dependent
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21 cm basics

n1/n0 = 3 exp(�h�21cm/kTs)

Hyperfine transition of neutral hydrogen

Spin temperature describes 
relative occupation of levels

Useful numbers:

100 MHz� z = 13
200 MHz� z = 6

70 MHz⇥ z � 20

tAge(z = 10) � 500 Myr

tAge(z = 6) � 1 Gyr

tAge(z = 20) � 150 Myr

tGal(z = 8) � 100 Myr

11S1/2

10S1/2
n0

n1

� = 21 cm ν21cm=1420 MHz

50 MHz => z~27

tAge(z=27) ~100 Myr 
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21 cm line in cosmology

CMB acts as 
back light

Neutral gas 
imprints signal

Redshifted signal
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Wouthysen-Field effect (resonant scattering of Lyα)  TSpin=>Tgas 
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21 cm astrophysics

Systematic path to probing different epochs
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Status of LOFAR

Ronald Nijboer (ASTRON)
On behalf of the LOFAR team

ASTRON, Dwingeloo, 23 Aug. 2010- 1 -SKA Calibration and Imaging Workshop 2010

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

MWALOFAR PAPER 
(completed)

SKA
(roll out 2019-2024)

1) LOFAR, MWA, PAPER => Currently upper limits
2) HERA: z<12 power spectrum & first images 
3) SKA1: power spectrum z<30 & resolved images of EoR
4) SKA2: map cosmic volumes

HERA 
(under construction)
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Continuing improvement

Upper limits beginning to make contact with possible models - rule out unheated IGM
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(1) Imaging

Tomographic Imaging of CD/EoR with SKA Garrelt Mellema

Figure 1: Left panel: 21cm image at z = 7.02 as derived from a full numerical simulation of reionization
(XL2 from Iliev et al. 2014), convolved with a 5 arcminute FWHM Gaussian beam and 0.8 MHz band-
width. The dark parts are large ionized regions. Right panel: a constructed 21cm signal with the same
power spectrum as the signal in the left panel but a Gaussian PDF. These two images are very different but
indistinguishable in a statistical power spectrum analysis.

with xHI the neutral hydrogen fraction, d = r/hri� 1, the overdensity in the baryon distribution,
Ts the spin (or excitation) temperature of the 21cm transition, TCMB(z) the Cosmic Microwave
Background (CMB) temperature, z the redshift of the signal, Wm and Wb, the total matter and baryon
density in terms of the critical density, h the Hubble parameter in units of 100 km s�1 Mpc�1, Yp

the primordial helium abundance by mass, and dvk/drk the proper gradient of the peculiar velocity
along the line of sight. This last term represents the effect of redshift space distortions.

From this expression one sees that the 21cm signal varies with position due to variations in the
matter overdensity d , the hydrogen neutral fraction xHI, the spin temperature TS and line of sight
velocity gradient dvk/drk. This forms the basis of the analysis of the 21cm signal be it statistically
or tomographically.

3. Regimes for Imaging

Imaging becomes possible once the signal to noise (S/N) for a certain size of spatial/spectral
resolution element becomes larger than 1. Since the instrument noise will decrease when forming
larger and larger resolution elements, even the first generation experiments such as LOFAR can in
principle produce images, although with very poor resolution. This was worked out in detail in
Zaroubi et al. (2012) where it was shown that LOFAR could produce images with a resolution of
⇠ 200, whereas power spectrum analysis should be able to reach angular scales of ⇠ 30.

Since the sensitivity of SKA1-Low varies with frequency, imaging will not be possible on
the same scales at all frequencies. Specifically, as the sensitivity drops rapidly below the critical
frequency the imaging capabilities for n < 100 MHz quickly deteriorate. In this regime larger
image resolution elements will need to be used to reach the same noise levels. For those regimes
in which imaging becomes unfeasible, statistical analysis with power spectra should be used.

3

3D maps of topology of reionization - ~10 arcmin resolution

Directly image HII region around AGN/bright sources

Environmental information for other probes of reionization

HII bubble catalogs and statistics

Mellema+ 2015
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B = ⌫21H(z)�r/[c(1 + z)2] ⇡ 0.15 MHz, where H(z) is the
Hubble parameter and c is the speed of light.

4.3 Angular and frequency resolution

The angular resolution of the radio interferometric observation is
characterized by the maximum baseline of the array as ✓A =
�/bmax radians (see Table 1). For SKA2 the angular resolution
is increased by a factor of 2. We implement the angular re-
sponse of the interferometer by convolving with a Gaussian point
spread function (PSF), R(✓), with FWHM corresponding to ✓A =
2.58(⌫/200 MHz)�1armin.

The frequency resolution is determined by the design of the
instrument, and for SKA1-low it is expected to be better than 1 kHz.
However, in practice, when analysing the signal a lower frequency
resolution is used to increase the SNR. Here we assume that the
data is smoothed in the frequency direction with a Gaussian kernel
of exactly the same physical size as the angular PSF. For the chosen
redshift this implies a FWHM of 453 kHz.

4.4 Noise

The point-source sensitivity of an interferometer is given by (e.g.
Thompson et al. 2001, eq. (6.62))

�S =
2kBTsys

✏Ae↵

p
Nst(Nst � 1)Btint

, (14)

where tint is the integration time of an observation and ✏ is the
efficiency factor described in Section 4.1. For imaging (i.e. 21-
cm tomography), we are concerned with the rms brightness tem-
perature sensitivity (in units of K) of an image at angular scale
⌦A = (⇡/4 ln 2)✓2A (Condon & Ransom 2016),

�N =

✓
�S

⌦A

◆
�2

2kB
(15)

⇡ 7.85

✓
tint

1000 hr

◆�1/2 ✓
B

0.453 MHz

◆�1/2 ✓
✓A
2.830

◆�2

mK,

at the observed frequency 182 MHz (z = 6.8) and on the scale
of the maximum angular resolution element of the SKA1-low12.
This noise estimate is somewhat optimistic as it assumes full uv
coverage and more detailed calculations suggest noise levels which
are between a factor 1.5 and 2 higher.

As explained in Section 3.2, we produce 100 Monte Carlo re-
alizations of the noise cubes. We generate white (Gaussian) noise
fields, which have the same spatial (angular) scale and frequency
range as the 21-cm data cube (Section 4.2). The rms noise level
h(�TN)

2i at the scale of the resolution element is then normalized
according to equation (15). Because of the assumption of white
noise, the noise power spectrum scales as �2

N(k) / k3.
To quantify the image quality, we define the SNR for a data

cube as the ratio of the rms fluctuations between an image cube

we can use the entire frequency range to approximately represent the state
of z = 7.
12 We are aware that this estimate of the SKA1-low sensitivity might be
optimistic. When a more realistic set-up of interferometric imaging is taken
into account, to achieve ⇠ 3� 5 mK rms noise level it could take an inte-
gration time longer than what estimated here. The most important parameter
that directly affects our analysis and conclusion is the rms sensitivity, �N.
The integration time must be regarded only as a rule-of-thumb. Therefore,
we quote the rms sensitivity rather than the integration time in this paper.

Figure 1. Example of sieving for a 2D log-normal bubble model in a
1h�1cGpc box on a side. The red circle shows the radius of the structuring
element. The left panel shows the original (unsieved) distribution of H II re-
gions. The middle and right panels show the distributions obtained by siev-
ing the original image with a disc of radius 27h�1cMpc and 39h�1cMpc,
respectively.

Figure 2. Differential size distributions of H II regions from granulometric
analysis (solid line). The dashed curve shows the input probability distribu-
tion function of H II region sizes in the log-normal model.

and a noise cube on the scale of resolution element SNR(✓A) =p
h(�T21)2i/h(�TN )2i.

4.5 Foregrounds

We assume that the various foreground signals are perfectly re-
moved from our data cube. Chapman et al. (2015) discussed the
effect of different foreground removal techniques on the recon-
structed 21-cm images, showing that good quality reconstructed
21-cm data cubes are in principle obtainable. Studying the impact
of foreground residuals on the 21-cm tomographic analysis is be-
yond the scope of this paper.

5 GRANULOMETRIC ANALYSIS

In this section, we first present the results of granulometric analysis
of one constructed and one simulated distribution of H II regions, as
well as of the noiseless 21-cm signals associated with the latter. The
goal is to understand the physical properties probed by the granulo-
metric analysis and how well the 21-cm cold-spot size distribution
traces the underlying size distribution of the H II regions.

5.1 A proof-of-concept: log-normal bubble model

As a proof-of-concept, we apply the granulometric measurement of
size distribution of H II regions to a Monte Carlo realization of the
2D log-normal bubble model from section 2.1.1. Figure 1 shows
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where tint is the integration time of an observation and ✏ is the
efficiency factor described in Section 4.1. For imaging (i.e. 21-
cm tomography), we are concerned with the rms brightness tem-
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This noise estimate is somewhat optimistic as it assumes full uv
coverage and more detailed calculations suggest noise levels which
are between a factor 1.5 and 2 higher.

As explained in Section 3.2, we produce 100 Monte Carlo re-
alizations of the noise cubes. We generate white (Gaussian) noise
fields, which have the same spatial (angular) scale and frequency
range as the 21-cm data cube (Section 4.2). The rms noise level
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2i at the scale of the resolution element is then normalized
according to equation (15). Because of the assumption of white
noise, the noise power spectrum scales as �2
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that directly affects our analysis and conclusion is the rms sensitivity, �N.
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Figure 1. Example of sieving for a 2D log-normal bubble model in a
1h�1cGpc box on a side. The red circle shows the radius of the structuring
element. The left panel shows the original (unsieved) distribution of H II re-
gions. The middle and right panels show the distributions obtained by siev-
ing the original image with a disc of radius 27h�1cMpc and 39h�1cMpc,
respectively.

Figure 2. Differential size distributions of H II regions from granulometric
analysis (solid line). The dashed curve shows the input probability distribu-
tion function of H II region sizes in the log-normal model.

and a noise cube on the scale of resolution element SNR(✓A) =p
h(�T21)2i/h(�TN )2i.

4.5 Foregrounds

We assume that the various foreground signals are perfectly re-
moved from our data cube. Chapman et al. (2015) discussed the
effect of different foreground removal techniques on the recon-
structed 21-cm images, showing that good quality reconstructed
21-cm data cubes are in principle obtainable. Studying the impact
of foreground residuals on the 21-cm tomographic analysis is be-
yond the scope of this paper.

5 GRANULOMETRIC ANALYSIS

In this section, we first present the results of granulometric analysis
of one constructed and one simulated distribution of H II regions, as
well as of the noiseless 21-cm signals associated with the latter. The
goal is to understand the physical properties probed by the granulo-
metric analysis and how well the 21-cm cold-spot size distribution
traces the underlying size distribution of the H II regions.

5.1 A proof-of-concept: log-normal bubble model

As a proof-of-concept, we apply the granulometric measurement of
size distribution of H II regions to a Monte Carlo realization of the
2D log-normal bubble model from section 2.1.1. Figure 1 shows
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Figure 3. Comparison of four radiative transfer simulations post-processed on the same density field, but using different source prescriptions parametrized by
Ṅ (m) = α(m) m. The white regions are ionized and the black are neutral. The left-hand panel, left centre panel, right centre panel and right-hand panels are,
respectively, cuts through Simulations S2 (α ∝ m−2/3), S1 (α ∝ m0), S3 (α ∝ m2/3) and S4 (α ∝ m0, but only haloes with m > 4 × 1010 M⊙ host sources). For
the top panels, the volume-ionized fraction is x̄i,V ≈ 0.2 (the mass-ionized fraction is x̄i,M ≈ 0.3) and z = 8.7. For the middle panels, x̄i,V ≈ 0.5(xi,M ≈ 0.6)
and z = 7.7, and for the bottom panels, x̄i,V ≈ 0.7(x̄i,M ≈ 0.8) and z = 7.3. Note that the S4 simulation outputs have the same x̄i,M , but x̄i,V that are typically
0.1 smaller than that of other runs. In S4, the source fluctuations are nearly Poissonian, resulting in the bubbles being uncorrelated with the density field
(x̄i,V ≈ x̄i,M ). Each panel is 94 Mpc wide and would subtend 0.6 degrees on the sky.
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Figure 4. The volume-weighted bubble radius PDF for the S1 (solid curves),
S3 (dot–dashed curves) and S4 (dotted curves) simulations. See the text for
our definition of the bubble radius R. We do not include curves for the
S2 simulation because they are similar to those for S1. The thin curves
are at z = 8.7 and x̄i,M = 0.3, and the thick curves are at z = 7.3 and
x̄i,M = 0.8. Simulation S4 has the rarest sources and the largest H II regions
of the four models.
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Figure 5. The ionization fraction power spectrum "xx (k)2 = k3 Pxx (k)/2π2

for the S1 (solid curves), S2 (dashed curves), S3 (dot–dashed curves) and S4
(dotted curves) simulations. For the top panels, x̄i,V ≈ 0.2(x̄i,M ≈ 0.3), for
the middle panels, x̄i,V ≈ 0.5(xi,M ≈ 0.6) and for the bottom panels, x̄i,V ≈
0.7(x̄i,M ≈ 0.8). In all panels, the fluctuations are larger at k ! 1 h Mpc−1

in S3 and S4 than they are in S1 and in S2. As the most massive haloes
contribute more of the ionizing photons, the ionization fraction fluctuations
increase at large scales.

C⃝ 2007 The Authors. Journal compilation C⃝ 2007 RAS, MNRAS 377, 1043–1063
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Granulometry on 21cm image
21 cm cold spots arise two ways  
- ionised regions or underdense voidsRecovering the H II region size statistics from 21-cm tomography 9

Figure 5. Top: Size distribution of 21-cm cold spots (black solid histogram),
H II regions (red dashed histogram), and voids (blue dotted histogram) from
the granulometric analysis of the RT simulation at z = 6.8 (hxHIIiV =

0.40). The black and red curves with filled and open circles are the best-
fit modified Schechter functions for the size distributions of 21-cm cold
spots and H II regions, respectively. Bottom: Difference between the size
distributions of 21-cm cold spots and H II regions, dQ21(< R)/d lnR �
dQHII(< R)/d lnR (black). The red line is the line of zero difference.

applying the same granulometric analysis to the negative excursion
sets of the density fluctuation field, �b(r) < 0. The bottom panel
shows the difference between the size distributions of 21-cm cold
spots and H II regions. Note that the size distributions shown in Fig-
ure 5 (and hereafter unless otherwise stated) are normalized to the
volume-filling factor, i.e. dQ(< R)/dR ⌘ QdF (< R)/dR15.

As suggested by the results on the filling factors in the previ-
ous section, the size distribution of 21-cm cold spots traces that of
H II regions very well for QHII > 0.4. The slight deviation seen
at R . 5h�1cMpc occurs because of the contamination by voids.
This leads to a slight underestimation of the mean size of H II re-
gions inferred from the mean size of 21-cm cold spots (by ⇠ 10%).
The voids remain a minor contaminant to the overall 21-cm cold-
spot size statistics of 21-cm tomography affecting the results only
by approximately 10%.

Figure 6 is the equivalent of Figure 5 at z = 7.6 (hxHIIiV =
0.16). As expected, we see that the contamination from voids dom-
inates over the signature of H II regions in the 21-cm cold-spot size
distribution. As noted in Section 5.3.1 this is because the under-
lying filling factor of H II regions is small during the first half of
reionization.

15 This definition is more convenient when there is contamination from
voids. Normalizing the size distribution to unity produces an artificial dif-
ference between the size distributions of 21-cm cold spots and H II regions
at larger sizes R. While the void contamination is mostly confined at smaller
R, when normalized to unity the size distribution at larger R appears to be
lower to compensate for the increase at small R. This trivial error is avoided
by normalizing the size distribution to the volume-filling factor.

Figure 6. Same as Figure 5, but at z = 7.6 (hxHIIiV = 0.16). Note that
the void size distribution is virtually identical to the one at z = 6.8 shown
in Figure 5 because the density perturbation evolves very slowly. The void
contamination is large at this redshift.

The large difference between the shapes of the size distribu-
tions of H II regions and voids provides a way to avoid the void-
H II region confusion. The void size distribution is always confined
within R . 5h�1cMpc. In fact, the size distribution of the excur-
sion sets of a Gaussian random field can be well understood and
predicted given a priori knowledge of the matter power spectrum
(Bardeen et al. 1986; Bond & Efstathiou 1987; Sheth & van de
Weygaert 2004). Therefore, we can test the robustness of the iden-
tification of cold spots as H II regions against the null hypothesis of
void size statistics.

Overall, we conclude that the size distribution of 21-cm cold
spot traces that of H II regions very well during the second half of
reionization. For the first half of reionization the interpretation of
21-cm cold spots becomes increasingly difficult because of large
contamination from voids for our canonical choice of threshold
�T th

12 = 0. We note that this may be mitigated by choosing lower
values for the threshold.

6 RECOVERY OF H II REGION SIZE DISTRIBUTION:
3D DATA SETS

So far we have only considered the case of a pure simulated 21-cm
signal. We now turn our attention to the prospects for recovering
the H II region size distribution from 21-cm tomography using a
SKA-like radio interferometer.

The recovery of the size distributions of 21-cm cold spots and
H II regions from real-world radio interferometric observations is
subjected to noise, instrumental response, foregrounds, and observ-
ing strategy. We therefore ask the question: what are the require-
ments to recover the H II region size distribution from 21-cm tomo-
graphic data observed with the SKA?

MNRAS 000, 1–19 (2016)
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Figure 13. Top: 21-cm cold-spot size distributions measured from a noiseless 2D image with a 2 km baseline angularresolution (red dashed), noise image
(blue dotted), and a mock SKA1-low imaging observation with �N = 4.35 mK (left panel) and �N = 2.0 mK (right panel) rms noise level. The curves
show the best-fit modified Schechter functions. Bottom: absolute difference between the noiseless 21-cm signal and mock observations. The inner error bars
indicate the 1� statistical uncertainties due to the thermal noise. The outer error bars include 1� statistical error from the sample variance.

Figure 14. Performance of the graulometric measurement of 21-cm colds
spot size distribution once all the requirements are satisfied (see text for
details). The green filled points show the size distribution measured from
SKA2 with a �N = 2.0mK noise level. The frequency channel is chosen to
be 0.23 MHz wide to match the 1.4 arcmin angular resolution of SKA2. The
red, blue, and green curves show the best-fit modified Schechter functions
of the size distributions measured from the fully resolved noiseless 21-cm
signal, SKA1-low, and SKA2. The inner error bars are only with 1� noise
error and the outer error bar is the 1� noise+sample variance error.

duced by having a lower absolute value of the rms noise level after
a longer integration time.

7.2 Performance of a successful recovery

Finally, we test the performance of the granulometric measurement
of the 21-cm cold-spot size distribution once all the requirements
are satisfied. Figure 13 shows the expected results for SKA1-low
about the granulometric measurement of the 21-cm cold spots us-
ing a mock 4.62 deg2 FoV image at z = 6.8 after interferometric
mosaic imaging by patching many single pointing data. The im-
age is formed with a 0.45 MHz channel width. The black points
show the mock measurements and the black curve shows the best-
fit modified Schechter function. The red curve and histogram refers
to an ideal case in the absence of noise. The blue histogram shows
the spurious noise cold-spot size distribution.

With a rms noise �N = 4.35 mK (SNR = 1.4 at the reso-
lution element), as shown in the left panel, the splitting bias due
to thermal noise is still noticeable on the measured size distribu-
tion (black). The splitting bias is within the statistical uncertainties
when both sample variance and noise errors are included. For the
SKA1-low data with �N = 2.0 mK16, the splitting bias becomes
negligibly small. Thus, successfully recovering the 21-cm cold-
spot size distribution at 2 km baseline resolution level is possible
with the SKA1-low when the mosaicking/multi-beaming technique
is used to increase the effective sky coverage.

Figure 14 shows the expected improvement for SKA2 if it is
extended to longer intermediate-scale baselines. The green points
are the mock SKA2 measurements, and the green curve with tri-
angles indicates the best-fit modified Schechter function. As al-

16 Although this integration time could unlikely be achieved with SKA1-
low for a single FoV, this rms level could be possible with SKA2 phase
with a reasonable integration time. One could also apply larger angular or
frequency smoothing to enhance the SNR (but must beware of the smooth-
ing bias in the measurement).
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(2) Evolution of the power spectrum
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specifications, see Table 2. The black line indicates the expected power spectrum of the 21cm power
signal.

the same assumptions and the same scaling relations. To properly compare the different arrays,
we take k = 0.1 cMpc�1 as the reference point where to compare sensitivities.

PAPER and MWA: We find that the current array-configurations of PAPER and MWA perform
equally well, even though PAPER has a smaller collecting area (Acoll) than MWA and a similar
number of stations. The lower collecting area of PAPER is compensated by making the array
even more compact than MWA, hence lowering Acore. Equation 12 shows that this improves
the power spectrum sensitivity of the array. In addition, PAPER gains sensitivity by having a
somewhat smaller Ae↵ , since only single dipoles are used rather than tiles. Overall this results in
PAPER and MWA having similar sensitivities to the power spectrum. Both PAPER and MWA
are able to probe only the smallest k modes, because of their compact configurations. We note
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B = ⌫21H(z)�r/[c(1 + z)2] ⇡ 0.15 MHz, where H(z) is the
Hubble parameter and c is the speed of light.

4.3 Angular and frequency resolution

The angular resolution of the radio interferometric observation is
characterized by the maximum baseline of the array as ✓A =
�/bmax radians (see Table 1). For SKA2 the angular resolution
is increased by a factor of 2. We implement the angular re-
sponse of the interferometer by convolving with a Gaussian point
spread function (PSF), R(✓), with FWHM corresponding to ✓A =
2.58(⌫/200 MHz)�1armin.

The frequency resolution is determined by the design of the
instrument, and for SKA1-low it is expected to be better than 1 kHz.
However, in practice, when analysing the signal a lower frequency
resolution is used to increase the SNR. Here we assume that the
data is smoothed in the frequency direction with a Gaussian kernel
of exactly the same physical size as the angular PSF. For the chosen
redshift this implies a FWHM of 453 kHz.

4.4 Noise

The point-source sensitivity of an interferometer is given by (e.g.
Thompson et al. 2001, eq. (6.62))

�S =
2kBTsys

✏Ae↵

p
Nst(Nst � 1)Btint

, (14)

where tint is the integration time of an observation and ✏ is the
efficiency factor described in Section 4.1. For imaging (i.e. 21-
cm tomography), we are concerned with the rms brightness tem-
perature sensitivity (in units of K) of an image at angular scale
⌦A = (⇡/4 ln 2)✓2A (Condon & Ransom 2016),

�N =

✓
�S

⌦A

◆
�2

2kB
(15)

⇡ 7.85

✓
tint

1000 hr

◆�1/2 ✓
B

0.453 MHz

◆�1/2 ✓
✓A
2.830
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mK,

at the observed frequency 182 MHz (z = 6.8) and on the scale
of the maximum angular resolution element of the SKA1-low12.
This noise estimate is somewhat optimistic as it assumes full uv
coverage and more detailed calculations suggest noise levels which
are between a factor 1.5 and 2 higher.

As explained in Section 3.2, we produce 100 Monte Carlo re-
alizations of the noise cubes. We generate white (Gaussian) noise
fields, which have the same spatial (angular) scale and frequency
range as the 21-cm data cube (Section 4.2). The rms noise level
h(�TN)

2i at the scale of the resolution element is then normalized
according to equation (15). Because of the assumption of white
noise, the noise power spectrum scales as �2

N(k) / k3.
To quantify the image quality, we define the SNR for a data

cube as the ratio of the rms fluctuations between an image cube

we can use the entire frequency range to approximately represent the state
of z = 7.
12 We are aware that this estimate of the SKA1-low sensitivity might be
optimistic. When a more realistic set-up of interferometric imaging is taken
into account, to achieve ⇠ 3� 5 mK rms noise level it could take an inte-
gration time longer than what estimated here. The most important parameter
that directly affects our analysis and conclusion is the rms sensitivity, �N.
The integration time must be regarded only as a rule-of-thumb. Therefore,
we quote the rms sensitivity rather than the integration time in this paper.

Figure 1. Example of sieving for a 2D log-normal bubble model in a
1h�1cGpc box on a side. The red circle shows the radius of the structuring
element. The left panel shows the original (unsieved) distribution of H II re-
gions. The middle and right panels show the distributions obtained by siev-
ing the original image with a disc of radius 27h�1cMpc and 39h�1cMpc,
respectively.

Figure 2. Differential size distributions of H II regions from granulometric
analysis (solid line). The dashed curve shows the input probability distribu-
tion function of H II region sizes in the log-normal model.

and a noise cube on the scale of resolution element SNR(✓A) =p
h(�T21)2i/h(�TN )2i.

4.5 Foregrounds

We assume that the various foreground signals are perfectly re-
moved from our data cube. Chapman et al. (2015) discussed the
effect of different foreground removal techniques on the recon-
structed 21-cm images, showing that good quality reconstructed
21-cm data cubes are in principle obtainable. Studying the impact
of foreground residuals on the 21-cm tomographic analysis is be-
yond the scope of this paper.

5 GRANULOMETRIC ANALYSIS

In this section, we first present the results of granulometric analysis
of one constructed and one simulated distribution of H II regions, as
well as of the noiseless 21-cm signals associated with the latter. The
goal is to understand the physical properties probed by the granulo-
metric analysis and how well the 21-cm cold-spot size distribution
traces the underlying size distribution of the H II regions.

5.1 A proof-of-concept: log-normal bubble model

As a proof-of-concept, we apply the granulometric measurement of
size distribution of H II regions to a Monte Carlo realization of the
2D log-normal bubble model from section 2.1.1. Figure 1 shows

MNRAS 000, 1–19 (2016)

size distribution

1) Parameter estimation
2) Model selection
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Emulation

Given a computationally expensive model y(x), for parameters x,  
build an “emulator” ȳ(x) that is fast to evaluate

1) Form training set of well chosen samples {xtrain, ytrain=y(xtrain)}
2) Establish basis for approximation
3) Establish means of interpolating from training set to arbitrary 

points

Used extensively in climate change and also in cosmology 
 
e.g. Coyote universe - emulation of non-linear matter power 
spectrum P(k | parameters)  
 - Latin hyper-cube used to build training set
 - PCA basis 
 - Gaussian processes for interpolation

Heitmann+ 2006, Habib+ 2007

Reionization simulations often computationally expensive, but  
vital for 21 cm analysis - approximate schemes needed
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Latin hypercube sampling

Neural networks and 21cm 5

Figure 2. Visualization of the two training techniques. The pa-
rameter space is projected down to two dimensions in each plot.
Top right: Regularly gridded parameters. Bottom left: Samples
are obtained using the Latin Hypercube sampling technique.

samples share any parameter value. In two dimensions this
method is equivalent to filling a chess board with rooks in
such a way that no two of them threaten each other. Imme-
diately, one of the shortcomings of the gridded parameter
space is dealt with, in that the simulation need never be run
at the same parameter value twice. The other main advan-
tage of the LH is that its size does not increase exponentially
with the dimension of parameter space. This property makes
the LH the only feasible way of exploring high dimensional
parameter spaces with ANNs (Urban and Fricker 2010).

We use a maximin distance design for our latin hyper-
cube samples (Morris and Mitchell 1995). These designs try
to simultaneously maximize the distance between all site
pairs while minimizing the number of pairs which are sepa-
rated by the same distance (Johnson et al. 1990). This max-
imin design for LHS prevents highly clustered sample regions
and ensures homogeneous sampling. Prior knowledge of the
behaviour of the power spectrum could also be used to iden-
tify the regions of parameter space where the power spec-
trum varies most rapidly and thus a higher concentration of
samples should be imposed on such a region. Additionally
using a spherical prior region may help reducing the number
of model evaluations used in the corners of parameter space
where the likelihood is low (Kern et al. 2017).

For our training set comparisons we use 3 di↵erent LH
training sets of size 100, 1000 and 10000 respectively.

4.3 Power Spectrum Predictions

We now test the predictive power of our trained ANN. First,
we define the loss term as the mean square error between
the true value of the power spectrum and an estimate given
by the ANN,

MSE =
1

N
p

N
k

NpX

i=1

NkX

j=1

✓
P true

i
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j
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i

(k
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)
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i
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j

)

◆2

,

(18)

Figure 3. Mean square error of the neural network trained on a
1000LHS training set, at z = 9, as a function of training iterations.

where N
p

is the number of parameter combinations we esti-
mate and compare, and N

k

the number of k-bins used in the
comparison. We produced a test set of 50 21cmFast power
spectra at z = 9, sampled from a LH design to ensure a
homogeneous spread in parameter space. This test set was
then compared to a prediction from our ANN trained on a
training set of size 1000 samples distributed again using a
LH design. We vary the training duration on this set and
compare the predictions to the true values of the test set in
Figure 3.

The neural network quickly approaches a relative mean
square error of less than 1% with more than 103 training it-
erations, after which point additional the e�ciency of addi-
tional training clearly reduces. In all our NN trainings from
this point on, we use 104 training iterations as this guaran-
tees the error to be less than 1%.

Further, we compare the mean square error between our
training techniques against the training set size and sam-
pling technique. In Figure 4, we compare the mean square
error in the prediction when the gridded parameter values
are interpolated (red), or used to train our neural network
(blue) with the predictions obtained when using a Latin hy-
percube sampled training set (orange). The error bars are
obtained by selecting 75% of the total points in the train-
ing set at random for the network regression. The network
is then trained on this subset and a value for the MSE is
obtained. A new training sample is then selected at random
and the process is repeated 10 times. The error bars thus
signify the expected error from any given latin hypercube
sampled training set of comparable size.

As expected, when using a finer grid of parameters to
interpolate the power spectrum, the accuracy of the pre-
diction increases. Although the neural network predictions
increase in accuracy for both the grid and the LHC, a clear
plateauing in the addition of information by a larger training
set can be observed. We thus observe a fundamental limit
to the relative mean square error for the neural network
design. This limit depends on the design parameters of the
neural network and can be optimized via k-fold validation of

MNRAS 000, 000–000 (0000)

Curse of dimensionality: number of points required to sample in a 
regular grid scales as (L/Δ)N - prohibitive for even modest N

Latin hypercube sampling - distribute M points such that each 
parameter is divided into M bins with each bin occupied only once.

More efficiently uses samples, especially if tweaked to reduce clustering
of points e.g. minimax nearest neighbour distances

Schmit+ 2017
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Figure 8. Comparison between the recovered 1� and 2� confi-
dence regions of 21CMMC (red) and the ANN emulator (blue) at
z = 9. The ANN uses 1000 LHS for the training set and a 104

training iterations. The dotted lines indicate the true parameter
values (⇣, Rmfp, log Tvir) = (30, 15, 4.48).

Table 1. Median values and 68% confidence interval found in the
parameter search via the brute-force method (21CMMC) and our
ANN emulation at z = 9 and z = 8. The fiducial parameter values
for both redshifts are given by (⇣, Rmfp, log Tvir) = (30, 15, 4.48).

Code - Training Set z ⇣ Rmfp log Tvir

21CMMC 9 41.28+24.85
�13.43 13.38+4.28

�5.15 4.59+0.37
�0.32

ANN - 100LHS 9 45.33+28.38
�16.91 12.05+5.47

�5.04 4.46+0.40
�0.23

ANN - 1000LHS 9 42.82+25.46
�14.01 12.89+4.59

�5.19 4.57+0.40
�0.31

ANN - 10000LHS 9 42.21+25.42
�14.12 13.18+4.46

�5.14 4.58+0.39
�0.31

21CMMC 8 39.64+31.90
�16.11 14.99+2.98

�3.64 4.61+0.21
�0.23

ANN - 100LHS 8 34.68+30.07
�11.39 14.67+3.48

�4.36 4.53+0.23
�0.21

ANN - 1000LHS 8 39.62+31.69
�16.27 14.67+3.17

�4.02 4.61+0.21
�0.24

ANN - 10000LHS 8 39.78+31.68
�16.22 14.61+3.15

�4.05 4.60+0.22
�0.23

to the 21cm power spectrum using the same emulator. The
same network could thus encode the skewness or bispectrum
of the 21cm fluctuations at the same time assuming the in-
clusion of these functions in the training sets.

7 CONCLUSION

With the advent of next generation telescopes such as MWA,
HERA and the SKA, a first detection of the cosmic 21cm sig-

Figure 9. Comparison between the recovered 1� and 2� confi-
dence regions of 21CMMC (red) and the ANN emulator (blue)
at z = 9. The ANN uses 100 LHS for the training set and a 104

training iterations. The dotted lines indicate the true parameter
values (⇣, Rmfp, log Tvir) = (30, 15, 4.48).

Figure 10. Comparison between the recovered 1� and 2� con-
fidence regions of 21CMMC (red) and the ANN emulator (blue)
at z = 8. The ANN uses 1000 LHS for the training set and a 104

training iterations. The dotted lines indicate the true parameter
values (⇣, Rmfp, log Tvir) = (30, 15, 4.48).

MNRAS 000, 000–000 (0000)
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Figure 4. Comparison between the mean square error of inter-
polation (red solid line), neural network using gridded training
sets (blue dot-dashed line) and neural network using LHC train-
ing sets (orange points). Neural networks are trained using 10000
training iterations. Plotted are the mean values after the NN is
retrained 10 times, and the standard deviation to the mean is
shown as error bars.

the networks hyper-parameters. Our network design limits
errors at ⇠ 1%, which is su�ciently below any confidence
limit associated with our model, that optimizing design pa-
rameters is of limited use. No clear di↵erence of the MSE
can be seen comparing the latin hypercube sampled train-
ing sets and those produced on the grid in 3 dimensions. We
expect a more significant discrepancy in higher dimensions
of parameter space as discussed in section 4.2.

We now plot the outputs of our trained network to com-
pare to the true values as obtained from a 21cmFast sim-
ulation. Figures 5 to 7 show the prediction of the neural
network. In order to determine the dependence of the accu-
racy of the predictions on the particular training set used,
we again randomly select a subset of the total training set
for our training. Similar to before, the network is retrained
10 times while the predictions are averaged. The variance
is then added as the expected error on the predicted value
of the power spectrum. The power spectrum is dominated
on small scales (k > 0.1 Mpc�1) by shot noise and by fore-
grounds on large scales (k < 0.015 Mpc�1). We therefore
apply cuts at these scales in our analysis and indicate the
noise dominated ranges by the grey shaded regions in figures
5, 6 and 7.

We observe that the network produces a good fit to the
true values within the region of interest. The size of the error
bars indicates a very low dependence on the training subset
used for training such that we conclude that the exact distri-
bution of training sets in parameter space has little influence
as long as it is homogeneously sampled. We also observe that
the network manages to fit ⇣ particularly well at large scales
compared to the other two parameters whose error bars no-
ticeably increase as k approaches the foreground cut-o↵.

Figure 5. Neural Network prediction against 21cmFast power
spectrum. Varying ⇣ at z = 9. 1000 training iterations on the
1000LHS training set and 10 retrainings for the error bars.

Figure 6. Neural Network prediction against 21cmFast power
spectrum. Varying T

vir

at z = 9. 1000 training iterations on the
1000LHS training set and 10 retrainings for the error bars.

5 BAYESIAN INFERENCE OF
ASTROPHYSICAL PARAMETERS.

In Bayesian parameter inference one is interested in the pos-
terior distribution of the parameters ✓ within some model
M. That is the probability distribution of the parameters
given some data set x. We can then write Bayes’ Theorem,

Pr(✓|x,M) =
Pr(x|✓,M)⇡(✓|M)

Pr(x|M)
, (19)

to relate the posterior distribution Pr(✓|x,M) to the Like-
lihood, L ⌘ Pr(x|✓,M), the prior, ⇡(✓|M), and a normal-
isation factor called the evidence, Pr(x|M). This expres-
sion parametrises the probability distribution of the model
parameters as a function of the likelihood, which, given a
model and a data set, can be readily evaluated under the

MNRAS 000, 000–000 (0000)

Different interpolation schemes - Gaussian Processes 
                                               - Neural networks

1000 LHC  
training set

Schmit+ 2017

Kern+ 2017

Sampling density in MCMC proportional to target density  
=> implies many samples are closely spaced in parameter space

Significant increase in speed without loss of accuracy 
e.g. training set ~ 103 samples c.f. 105- 106 in MCMC

Schmit+ 2017
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21cm bispectrum

Bispectrum a probe of non-Gaussianity
so complementary to power spectrum 
=> break degeneracies

Ultimately range of statistics needed to exploit information in 21cm observations

8

be able to capture the sign of the bispectrum or any change in it’s

sign either. The sign of the bispectrum is an imporatnt feature of

the signal and we will discuss it further in the context of other k

triangle configurations in the later part of this paper. The other fact

is that their estimator’s amplitude depends on both imaginary and

real part of the product of three complex ∆(k)s, whereas the 21-cm

bispectrum is expected to be a real quantity (Appendix A). Thus

one would be very skeptical to associate any physical significance to

any characteristic behaviour observed in the EoR 21-cm bispectrum

computed through their estimator.

A further visual inspection of the different Re[B(k1)] curves

in the top panel of Figure 5 reveals that Re[B(k1)] shows a power-

law like decline in amplitude with increasing k1 for 0.1 ! k1 !

2.0 Mpc−1 during almost the entire period of reionization, which is

in agreement with the toy model of Section 4.1. For the later stages

of reionization, Re[B(k1)] shows a further sharp decline beyond

k1 " 2.0 Mpc−1 and even reaches positive values at x̄H i ≤ 0.5 for

k1 " 3.0 Mpc−1. The central panel of the Figure 5 further shows

that for triangles involving large length scales i.e. small k1 values

(k1 = 0.20 Mpc−1) the amplitude of Re[B(k1)] increases signifi-

cantly with the decreasing x̄H i (or increasing xi) until reionization

is half way through (i.e. x̄H i ∼ 0.5). The toy model also predicts

an increment of the amplitude with increasing xi . For x̄H i < 0.5

the amplitude of Re[B(k1)] gradually decreases. Note that this is

also the regim during the EoR when the overlap of different ionized

regions become very significant in a realistic ionization topology

and the actual shapes of the ionized regions depart further from that

of an ideal smooth sphere. Thus it is unlikely that the toy model of

individual non-overlapping spherical ionized regions will capture

the true nature of the bispectrum at this regim. For triangles involv-

ing intermediate (k1 = 0.58 Mpc−1) and large (k1 = 1.18 Mpc−1) k

modes the increment in amplitude is observed until x̄H i ∼ 0.7 and

for later stages of reionization the amplitude gradually decreases.

The bottom panel of Figure 5 shows evolution of the various

component bispectra (with x̄H i) contributing to the 21-cm bispec-

trum (for k1 = 0.58 Mpc−1), estimated from the matter density and

xH i fields that are used to simulate the 21-cm signal, following

Equation (9). In this figure we have scaled the 21-cm bispectrum

with 1/T̄3
b

(z) to keep it’s dimension same with all the component

bispectra. It is evident from this plot that the major component con-

tributing to the 21-cm bispectrum for equilateral triangles (shown

as solid red line with error bars) for almost the entire period of

reionization is the neutral fraction bispectrum (shown as solid blue

line with diamonds). We also observe that the sum of all of the

eight components of bispectrum (not shown in the figure) does not

follow the evolution of the 21-cm bispectrum. However, the sum

of the neutral fraction and density field bispectra (shown as cyan

dashed line) does follow the evolution of the 21-cm bispectrum in

terms of it’s shape, if not exactly interms of it’s amplitude, espe-

cially during the intermediate and late stages of reionization. We

observe a similar behaviour, i.e. 21-cm bispectrum closely follow-

ing the xH i field bispectrum, for a wide length scale range i.e.

0.20 ≤ k1 ≤ 1.18 Mpc−1 (not shown in the figure) for this type

of triangles. The xH i bispectrum, which is the main contributor to

the 21-cm bispectrum for this type of triangle, also follows (at least

qualitatively) the shape and evolution predicted by the toy model of

xH i fluctuations discussed in Section 4.1. This further establishes

that this toy model is a reasonably good tool for interpreting the

qualitative behaviour of the 21-cm bispectrum, at least for this spe-

cific type of triangles. However, the sum of all eight components of

Equation (9) does not follow the 21-cm bispectrum (even qualita-

tively) can be attributed to the fact that the Equation (9) has been
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Figure 6. Signal trajectories in the P(k) − B(k) phase space for k = 0.20

and 0.58 Mpc−1. The corresponding values of x̄H i have been printed on the

respective points of the trajectories.

obtained under the linear approximation limit of the Fourier trans-

form of Equation (7). If one considers that the higher order terms

(terms beyond the linear regime) in density fluctuations and neutral

fraction also have significant contributions to the 21-cm signal, then

there will be many higher order component bispectra contributing

to the 21-cm bispectrum, compared to the just eight components

shown in Equation (9). Thus a correction to the Equation (9) by

including higher order contributions of two constituent fields may

provide us a more accurate model for the EoR 21-cm bispectrum. A

similar model in the context of the EoR 21-cm power spectrum has

been discussed in Lidz et al. (2007) through it’s equation (2) and

(3). We also plan to study the effectiveness of such an higher order

model in the context of interpreting the EoR 21-cm bispectrum in a

future follow up work.

5.2 Evolution of the 21-cm signal in P(k) − B(k) space

Since the spherically averaged power spectrum and the bispectrum

for equilateral triangles are two independent but complementary

measures of the 21-cm signal and both can be represented as a

function of the magnitude of just one wave number k, one can thus

visualize the evolution of the 21-cm signal as a trajectory in the

MNRAS 000, 000–000 (0000)
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the neutral fraction distribution. Note that we have not considered

an apparent enhancement in the fluctuation of the signal due to the

peculiar velocities of the matter particles. This will introduce an ad-

ditional term, −[(1 + z)/H (z)](∂v∥/∂r) (where r is the comoving

distance from the observer and v∥ is the line-of-sight component of

the peculiar velocity), at the right hand side of Equation (7). We plan

to study the effect of peculiar velocity on the bispectrum in a follow

up work. Assuming that δx , δ ≪ 1, one can drop all quadratic and

higher order terms involving δx and δ to express the ηH i in Fourier

space as:

η̃H i(k, z) = x̄H i(z)[∆x (k, z) + ∆(k, z)] , (8)

where η̃H i, ∆ and ∆x are the Fourier transform of ηH i, δ and δx
respectively.

Following Equation (8) one can write the H i bispectrum (of

ηH i) as:

BH i(k1, k2, k3) = B∆∆∆ + Bxxx + Bx∆∆ + B∆x∆ + B∆∆x

+ Bxx∆ + Bx∆x + B∆xx (9)

where the first, second and third subscript in each component bis-

pectrum on the right hand side correspond to the k1, k2 and k3

vector arms of a closed triangle in the Fourier space. We will use

this model of the H i bispectrum (built using the linear approxima-

tion) to interpret and analyse the 21-cm bispectrum estimated from

our simulations.

4.1 A toy model for H i fluctuation during the EoR

The H i fluctuation described by ηH i in Equation (7) has contribution

from two distinct components. One is the gravitational clustering of

the hydrogen which follows the underlying dark matter distribution

and the other is the spatial fluctuations in the neutral fraction of the

hydrogen, which is determined by the size and spatial distribution of

ionized regions at a certain stage of reionization. As a rudimentary

model of reionization one can assume that the ionized regions at

any stage of the EoR are non-overlapping spheres of equal radius

R and their centres are distributed randomly in the space. If the

mean comoving number density of such ionized spheres at a certain

stage of reionization is n̄H i, then the mean ionization fraction at that

stage will be xi = 1 − x̄H i = 4πR3n̄H i/3 and under this model the

Equation (7) can be rewritten as:

ηH i(x, z) = [1 + δ(x, z)]

⎡
⎢
⎢
⎢
⎢
⎣

1 −
∑

a

θ

(

|x − xa |

R

)⎤
⎥
⎥
⎥
⎥
⎦

, (10)

where a represents different ionized spheres with centres at xa and

θ(y) is the Heaviside step function defined such that θ(y) = 1 for 0 ≤

y ≤ 1 and zero otherwise. Several authors (e.g. Bharadwaj & Ali

2004, 2005 and Zaldarriaga, Furlanetto & Hernquist 2004 etc.) have

shown that, under such a model, at length scales larger than the typi-

cal ionized region size, the H i 21-cm signal fluctuation is dominated

by the fluctuations coming from these individual ionized regions. If

one assumes that the dark matter density fluctuations (δ) at high red-

shifts is approximately a Gaussian random field and non-Gaussian

features of order ∼ δ2 arise in it due to non-linear effects as the den-

sity fluctuations grow with time but these effects are relatively small

at large length scales, then one can approximate the term δ ∼ 0 and

write the H i fluctuations just as:

ηH i(x, z) =

⎡
⎢
⎢
⎢
⎢
⎣

1 −
∑

a

θ

(

|x − xa |

R

)⎤
⎥
⎥
⎥
⎥
⎦

. (11)
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Figure 4. Top panel: Model signal amplitude (in arbitrary units) as a func-

tion of k. Solid and dashed lines represents the model signal for a fixed

bubbles radius R = 10 Mpc and uniformly distributed bubble radii in the

range 0.7 ≤ R ≤ 25 Mpc, respectively. Central panel: Bispectrum for

equilateral triangles as function of k. Solid, dashed and dotted lines repre-

sent models with a fixed bubble radius (R = 10 Mpc), uniformly distributed

bubble radii in the range 0.7 ≤ R ≤ 25 Mpc and 0.7 ≤ R ≤ 10 Mpc,

respectively. Bottom panel: Bispectrum for isosceles triangles (k2/k1 = 1)

as a function of cos θ. The solid and dashed lines represent two different

values of k1 (0.20 and 0.58 Mpc−1, respectively).
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Bispectrum a probe of non-Gaussianity
so complementary to power spectrum
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To modularise the calculation we define the following,

�(n, k
i

) =

X

ki/kF'mi

�FFT(mi

)e

i2⇡n·mi/N
side ,

I(n, k
i

) =

X

ki/kF'mi

e

i2⇡n·mi/N
side , (12)

which can be calculated by creating a new FFT box containing the
data �(k

i

) wherever a pixel vector meets the requirement that
k

i

/kf ' m

i

, and zero otherwise. Then this new FFT box can
be FFTed to real space to create �(n, k

i

). Equivalently, a new
FFT box can be created containing 1 wherever k

i

/kf ' m

i

, and
zero otherwise, which may then be FFTed to real space to generate
I(n, k

i

). Our estimator for the polyspectrum can now be reduced
to,

P(k1,k2, ...kp

) ⇡ Hp

1

V

N

pixP
n

pQ
i=1

�(n, k
i

)

N

pixP
n

pQ
i=1

I(n, k
i

)

,
(13)

The product within the summations is equivalent to performing
an inverse-FFT of a convolution in k-space as FFT[g(x)h(x)] =
g(k) ⇤ h(k).

Until this point we have described how FFTs may be used
to implement Equation 13. As FFTs assume a real dataset, a
P(k1,k2, ...kp

) resulting from using FFTs will be a real quantity.
However, Equation 13 can equally be applied to complex datasets
by using complex DFTs (discrete FT) instead of FFTs.

The power spectrum may be calculated using the FFT-
polyspectrum estimator as follows,

P (k1,k2) ⇡
V

N2
pix

N

pixP
n

�(n, k1)�(n, k2)

N

pixP
n

I(n, k1)I(n, k2)

,

P (k1) ⇡
V

N2
pix

N

pixP
n

�(n, k1)�(n, k1)

N

pixP
n

I(n, k1)I(n, k1)

,

(14)

where in the second line we have made the standard assumption
that because the Universe is homogeneous and isotropic, the power
spectrum only depends on the separation of two points in real space,
i.e. the magnitude of a single k-mode. It is worth noting that in the
case of the spherically-averaged power spectrum it is actually faster
to use direct sampling rather than the FFT power-spectrum esti-
mator as, in this case, direct sampling only involves a single loop
through the box. It is therefore only worth considering using the
FFT polyspectrum estimator when calculating higher-order statis-
tics.

Equivalently, the bispectrum may be estimated by,

B(kFm1, kFm2, kFm3)

⇡ V 2

N3
pix

N

pixP
n

�(n, k1)�(n, k2)�(n, k3)

N

pixP
n

I(n, k1)I(n, k2)I(n, k3)

, (15)

In essence, we have reduced our bispectrum calculation from an
expensive nested loop though the FFT box, to one and a half loops
through the dataset (i.e. 3Npix/2 pixels) and six (or for a pth-
order polyspectra, 2 p) FFTs, which are trivial to parallelise with
openMP. The FFT-estimator’s speed means that it is well suited to
sampling applications. Another useful feature of the FFT-estimator
is that there is very little overhead to calculating all the p < P
spectrum, e.g. if you calculate the trispectrum (P = 4), you can
get the bispectrum (p = 3) and power spectrum (p = 2) for the
k-modes of the given trispectrum configuration at no extra cost.

In implementing the FFT-estimator numerically, it is possi-
ble to improve performance by making an initial pass through the
whole box, to build an indexing array in which the jth entry con-
tains the dimensionless co-ordinates m

x

,m
y

,m
z

(cast to 1D) of all
pixels in the box for which |j�n

p
m2

x

+m2
y

+m2
z

| < 1/2. With-
out the scale factor n, the sampling is too coarse and accuracy of
the estimator is impacted. We set the scale factor n = 10, and find
this produces fine enough sampling to reproduce the results pro-
duced by loading �(n, k

i

) with a full loop through the box each
time. Using the indexing array, filling a given �(n, k

i

) box only
requires loading the pixels whose co-ordinates are contained in the
j indexes satisfying |j/n�(

p
k2
x

+ k2
y

+ k2
z

/kf)| < s/2. Another
point to note is that, as the method depends heavily on FFTs, it no-
tably maximizes the efficiency of the code to use a resolution of 2n

on a side and to use threading with openMP when executing FFT
plans. On a MacBook Pro with a Intel Core i5 (2.9 GHz) dual-core
processor, a single measurement of B(k1, k2, k3) using the FFT-
estimator bispectrum algorithm (and including the indexing-array
approach and openMP-threaded FFTs) from a cubic box with 512
pixels per side takes about 10 seconds.

3 THE FFT BISPECTRUM ESTIMATOR -
COMPARISONS WITH THE DIRECT SAMPLING
METHOD AND THEORETICAL PREDICTIONS

To better understand, and to test, the algorithm we present in this
work, we test the FFT estimator as applied to the power spectrum
and bispectrum. Sefusatti et al. (2016) compare measuring the bis-
pectrum by direct sampling of particles in a box, with that measured
by gridding the particles, applying an FFT, and then applying the
FFT estimator. It is not possible from their work to distinguish be-
tween differences arising from aliasing (introduced by the sampling
and FFTing the data), to those due to applying the FFT estimator
instead of the direct sampling method to an FFTed dataset.

For our tests we choose a slightly non-Gaussian dataset,
namely a non-linearly evolved density field, and a very non-
Gaussian dataset in the form of a toy model for reionization. In
the raw measurements of the FFT bispectrum, we use a bin width
of s = 3, because throughout we measure the spherically-averaged
bispectrum and s = 3 accounts for modes within a pixel distance of
the components constructing a given |k|/kf , i.e. s/2 ⇠

p
3(1

2
).13

In many of the plots we present in this paper we plot the bispectrum
as a function of ✓, which corresponds to the internal angle between

13 Note that we find that using a fixed bin width works better than all the
variable bin widths we considered. We consider dk = s k

f

k/2 but this
works very badly as the bins are too big at large-k and too small at small-k.
Worse still is dk = s k

f

/(2 k). In general the chosen bin width will cause
the estimator to breakdown below a certain k; for example, choosing s = 4

would mean that the FFT estimator will break down for k/k
f

/ < s⇡/L =
0.02 when L = 600 Mpc.
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To modularise the calculation we define the following,
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The product within the summations is equivalent to performing
an inverse-FFT of a convolution in k-space as FFT[g(x)h(x)] =
g(k) ⇤ h(k).

Until this point we have described how FFTs may be used
to implement Equation 13. As FFTs assume a real dataset, a
P(k1,k2, ...kp

) resulting from using FFTs will be a real quantity.
However, Equation 13 can equally be applied to complex datasets
by using complex DFTs (discrete FT) instead of FFTs.
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where in the second line we have made the standard assumption
that because the Universe is homogeneous and isotropic, the power
spectrum only depends on the separation of two points in real space,
i.e. the magnitude of a single k-mode. It is worth noting that in the
case of the spherically-averaged power spectrum it is actually faster
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In essence, we have reduced our bispectrum calculation from an
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openMP. The FFT-estimator’s speed means that it is well suited to
sampling applications. Another useful feature of the FFT-estimator
is that there is very little overhead to calculating all the p < P
spectrum, e.g. if you calculate the trispectrum (P = 4), you can
get the bispectrum (p = 3) and power spectrum (p = 2) for the
k-modes of the given trispectrum configuration at no extra cost.
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tween differences arising from aliasing (introduced by the sampling
and FFTing the data), to those due to applying the FFT estimator
instead of the direct sampling method to an FFTed dataset.
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Gaussian dataset in the form of a toy model for reionization. In
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that we may write �D[ax] =
Q
j

|a|�1�D(x
j

), where j describes

the components that make up the vector x, and a is a non-zero
scalar. We can therefore rewrite the Dirac delta function in dimen-
sionless pixel co-ordinates (m

x

,m
y

,m
z

) as,
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As our dataset is discrete, we have converted to the Kronecker-
delta function �K(m

j

), the discrete realisation of the Dirac-delta
function, in the last line. We also need to connect the unnormalised
output of the FFTW algorithm �FFT(k) to the theoretical �(k) as
described in Equations 3 and 4,
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where Nside is the number of pixels on each side of the cube,
and spatial co-ordinates are related to pixel co-ordinates as x =

nL/Nside. With these conversions in hand we can write down an
estimator for the polyspectrum, P(k1,k2, ...kp

),
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where we implement the conversion to discrete Kronecker delta
function and unnormalised FFTW �FFT(m) in the second line. Be-
cause our dataset is discrete, we are forced to work with a bin width
of at least kF, the RHS therefore becomes an approximation of the
LHS. Cancellations, and enforcing the delta function on the left
then gives us,
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where L

i

is the length of box side in the i axis. However, for the sake of
simplicity our derivation is formulated for a cube for which each side is the
same length, were this not the case there would technically be a different
fundamental kF for each axis. Regardless, this factor reduces to 1/V in the
final estimator which is calculated in the same way regardless of whether
the data volume is cubic or not.

We can also incorporate an arbitrary bin width s such that,
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where the sums are over all k
i

/kF vectors that fall within a bin
width of m

i

, i.e. where |(k
i

/kF) � m

i

| 6 s/2, and Npoly is the
number of polygons formed by m1 +m2 ... +m

p

= 0. Whilst it
is possible to use any value for s within this framework, we advise
that the binwidth is kept to that of a pixel.

Npoly can be written in terms of a sum over the Kronecker
delta function when modes meet the above requirements, as per
the last line of Equation 9. By doing this instead of actually count-
ing the triangles as in the direct method, this method becomes an
estimator of the bispectrum in a discrete dataset, and can diverge
from the direct-method of measuring polyspectra.12 This is because
aliasing may introduce spurious extra triangle counts to the denom-
inator in the same way as it can introduce spurious additional power
to the polyspectra.

Recalling that x = nL/Nside, the Kronecker delta may be
written as,
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Equation 9 then becomes,
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12 We are interested in the accuracy with which we can measure the bis-
pectrum from data, rather than how well that measured bispectrum repre-
sents the ‘true’ bispectrum of the field that the dataset represents. Therefore
we do not describe the direct-sampling method as an estimator, even though,
technically speaking, even the direct-sampling method is an estimator of the
‘true’ bispectrum.
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cause our dataset is discrete, we are forced to work with a bin width
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simplicity our derivation is formulated for a cube for which each side is the
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fundamental kF for each axis. Regardless, this factor reduces to 1/V in the
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= 0. Whilst it
is possible to use any value for s within this framework, we advise
that the binwidth is kept to that of a pixel.

Npoly can be written in terms of a sum over the Kronecker
delta function when modes meet the above requirements, as per
the last line of Equation 9. By doing this instead of actually count-
ing the triangles as in the direct method, this method becomes an
estimator of the bispectrum in a discrete dataset, and can diverge
from the direct-method of measuring polyspectra.12 This is because
aliasing may introduce spurious extra triangle counts to the denom-
inator in the same way as it can introduce spurious additional power
to the polyspectra.
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12 We are interested in the accuracy with which we can measure the bis-
pectrum from data, rather than how well that measured bispectrum repre-
sents the ‘true’ bispectrum of the field that the dataset represents. Therefore
we do not describe the direct-sampling method as an estimator, even though,
technically speaking, even the direct-sampling method is an estimator of the
‘true’ bispectrum.
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To modularise the calculation we define the following,
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The product within the summations is equivalent to performing
an inverse-FFT of a convolution in k-space as FFT[g(x)h(x)] =
g(k) ⇤ h(k).

Until this point we have described how FFTs may be used
to implement Equation 13. As FFTs assume a real dataset, a
P(k1,k2, ...kp

) resulting from using FFTs will be a real quantity.
However, Equation 13 can equally be applied to complex datasets
by using complex DFTs (discrete FT) instead of FFTs.

The power spectrum may be calculated using the FFT-
polyspectrum estimator as follows,
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where in the second line we have made the standard assumption
that because the Universe is homogeneous and isotropic, the power
spectrum only depends on the separation of two points in real space,
i.e. the magnitude of a single k-mode. It is worth noting that in the
case of the spherically-averaged power spectrum it is actually faster
to use direct sampling rather than the FFT power-spectrum esti-
mator as, in this case, direct sampling only involves a single loop
through the box. It is therefore only worth considering using the
FFT polyspectrum estimator when calculating higher-order statis-
tics.

Equivalently, the bispectrum may be estimated by,
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In essence, we have reduced our bispectrum calculation from an
expensive nested loop though the FFT box, to one and a half loops
through the dataset (i.e. 3Npix/2 pixels) and six (or for a pth-
order polyspectra, 2 p) FFTs, which are trivial to parallelise with
openMP. The FFT-estimator’s speed means that it is well suited to
sampling applications. Another useful feature of the FFT-estimator
is that there is very little overhead to calculating all the p < P
spectrum, e.g. if you calculate the trispectrum (P = 4), you can
get the bispectrum (p = 3) and power spectrum (p = 2) for the
k-modes of the given trispectrum configuration at no extra cost.

In implementing the FFT-estimator numerically, it is possi-
ble to improve performance by making an initial pass through the
whole box, to build an indexing array in which the jth entry con-
tains the dimensionless co-ordinates m
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out the scale factor n, the sampling is too coarse and accuracy of
the estimator is impacted. We set the scale factor n = 10, and find
this produces fine enough sampling to reproduce the results pro-
duced by loading �(n, k
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) with a full loop through the box each
time. Using the indexing array, filling a given �(n, k

i

) box only
requires loading the pixels whose co-ordinates are contained in the
j indexes satisfying |j/n�(

p
k2
x

+ k2
y

+ k2
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/kf)| < s/2. Another
point to note is that, as the method depends heavily on FFTs, it no-
tably maximizes the efficiency of the code to use a resolution of 2n

on a side and to use threading with openMP when executing FFT
plans. On a MacBook Pro with a Intel Core i5 (2.9 GHz) dual-core
processor, a single measurement of B(k1, k2, k3) using the FFT-
estimator bispectrum algorithm (and including the indexing-array
approach and openMP-threaded FFTs) from a cubic box with 512
pixels per side takes about 10 seconds.

3 THE FFT BISPECTRUM ESTIMATOR -
COMPARISONS WITH THE DIRECT SAMPLING
METHOD AND THEORETICAL PREDICTIONS

To better understand, and to test, the algorithm we present in this
work, we test the FFT estimator as applied to the power spectrum
and bispectrum. Sefusatti et al. (2016) compare measuring the bis-
pectrum by direct sampling of particles in a box, with that measured
by gridding the particles, applying an FFT, and then applying the
FFT estimator. It is not possible from their work to distinguish be-
tween differences arising from aliasing (introduced by the sampling
and FFTing the data), to those due to applying the FFT estimator
instead of the direct sampling method to an FFTed dataset.

For our tests we choose a slightly non-Gaussian dataset,
namely a non-linearly evolved density field, and a very non-
Gaussian dataset in the form of a toy model for reionization. In
the raw measurements of the FFT bispectrum, we use a bin width
of s = 3, because throughout we measure the spherically-averaged
bispectrum and s = 3 accounts for modes within a pixel distance of
the components constructing a given |k|/kf , i.e. s/2 ⇠

p
3(1

2
).13

In many of the plots we present in this paper we plot the bispectrum
as a function of ✓, which corresponds to the internal angle between

13 Note that we find that using a fixed bin width works better than all the
variable bin widths we considered. We consider dk = s k

f

k/2 but this
works very badly as the bins are too big at large-k and too small at small-k.
Worse still is dk = s k

f

/(2 k). In general the chosen bin width will cause
the estimator to breakdown below a certain k; for example, choosing s = 4

would mean that the FFT estimator will break down for k/k
f

/ < s⇡/L =
0.02 when L = 600 Mpc.
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To modularise the calculation we define the following,
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The product within the summations is equivalent to performing
an inverse-FFT of a convolution in k-space as FFT[g(x)h(x)] =
g(k) ⇤ h(k).

Until this point we have described how FFTs may be used
to implement Equation 13. As FFTs assume a real dataset, a
P(k1,k2, ...kp

) resulting from using FFTs will be a real quantity.
However, Equation 13 can equally be applied to complex datasets
by using complex DFTs (discrete FT) instead of FFTs.

The power spectrum may be calculated using the FFT-
polyspectrum estimator as follows,
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where in the second line we have made the standard assumption
that because the Universe is homogeneous and isotropic, the power
spectrum only depends on the separation of two points in real space,
i.e. the magnitude of a single k-mode. It is worth noting that in the
case of the spherically-averaged power spectrum it is actually faster
to use direct sampling rather than the FFT power-spectrum esti-
mator as, in this case, direct sampling only involves a single loop
through the box. It is therefore only worth considering using the
FFT polyspectrum estimator when calculating higher-order statis-
tics.

Equivalently, the bispectrum may be estimated by,
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In essence, we have reduced our bispectrum calculation from an
expensive nested loop though the FFT box, to one and a half loops
through the dataset (i.e. 3Npix/2 pixels) and six (or for a pth-
order polyspectra, 2 p) FFTs, which are trivial to parallelise with
openMP. The FFT-estimator’s speed means that it is well suited to
sampling applications. Another useful feature of the FFT-estimator
is that there is very little overhead to calculating all the p < P
spectrum, e.g. if you calculate the trispectrum (P = 4), you can
get the bispectrum (p = 3) and power spectrum (p = 2) for the
k-modes of the given trispectrum configuration at no extra cost.

In implementing the FFT-estimator numerically, it is possi-
ble to improve performance by making an initial pass through the
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on a side and to use threading with openMP when executing FFT
plans. On a MacBook Pro with a Intel Core i5 (2.9 GHz) dual-core
processor, a single measurement of B(k1, k2, k3) using the FFT-
estimator bispectrum algorithm (and including the indexing-array
approach and openMP-threaded FFTs) from a cubic box with 512
pixels per side takes about 10 seconds.

3 THE FFT BISPECTRUM ESTIMATOR -
COMPARISONS WITH THE DIRECT SAMPLING
METHOD AND THEORETICAL PREDICTIONS

To better understand, and to test, the algorithm we present in this
work, we test the FFT estimator as applied to the power spectrum
and bispectrum. Sefusatti et al. (2016) compare measuring the bis-
pectrum by direct sampling of particles in a box, with that measured
by gridding the particles, applying an FFT, and then applying the
FFT estimator. It is not possible from their work to distinguish be-
tween differences arising from aliasing (introduced by the sampling
and FFTing the data), to those due to applying the FFT estimator
instead of the direct sampling method to an FFTed dataset.

For our tests we choose a slightly non-Gaussian dataset,
namely a non-linearly evolved density field, and a very non-
Gaussian dataset in the form of a toy model for reionization. In
the raw measurements of the FFT bispectrum, we use a bin width
of s = 3, because throughout we measure the spherically-averaged
bispectrum and s = 3 accounts for modes within a pixel distance of
the components constructing a given |k|/kf , i.e. s/2 ⇠
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In many of the plots we present in this paper we plot the bispectrum
as a function of ✓, which corresponds to the internal angle between

13 Note that we find that using a fixed bin width works better than all the
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For example, estimator of the bispectrum

Watkinson+ 2017

Need fast estimator for bispectrum, since large range of possible configurations

Fast estimator for the bispectrum & beyond. 5

Figure 1. Illustration of the angle plotted throughout this paper, with re-
spect to the vectors k1 and k2, where k3 = �k1 �k2 closes the triangle.

vectors k1 and k2 when they are added, this is illustrated in Figure
1.

Throughout the paper we compare the FFT-bispectrum mea-
surements to that of theory, but also to the bispectrum measured by
a direct-sampling method.

3.1 Direct sampling of the bispectrum

To evaluate the performance of the FFT bispectrum estimator, it
is desirable to draw comparison with another algorithm. We there-
fore use a restricted implementation of the direct sampling method,
which has been designed to reduce calculation time, and make the
measurements presented here computationally tractable.

The main reason one would like to have a faster estimator for
the bispectrum, or any other higher order polyspectra, is because
the conventional direct estimators (that directly implement Equa-
tion 1 in their algorithm) of such polyspectra, require a signifi-
cant amount of computational time. To implement Equation 1 in
the direct algorithm of bispectrum, one would typically need to go
through six nested for loops,14 each the size of the FFT box side in
grid units.15 Such a nested loop is very computationally expensive.

To reduce the number of nested loops, we introduce two con-
straints on k1 and k2 in our direct-estimation algorithm. For a spe-
cific kind of triangle configuration, the ratio between the two arms
of the triangle must remain constant, i.e.

k2/k1 = m, (16)

and the cosine of the angle (↵ = ⇡ � ✓) between the two vector
arms of the triangle must be fixed to,

k1 · k2

k1k2
= cos↵ . (17)

Implementation of these two constraints in the algorithm requires
four nested for loops rather than six. This reduces the total number
of steps in the algorithm to N4, instead of N6. where N is the
number of steps corresponding to each for loop.

14 To construct all possible vector triplets (k1, k2, k3 in a three dimen-
sional vector space) in the FT box, one would need nine nested for loops.
However, when we impose the condition that these vector triplets should
form a closed triangle, that reduces it to six nested for loops. The equation
of constraint (k1 + k2 + k3 = 0) in this case is a vector equation, thus
effectively three scalar equations and reduces three degrees of freedom.
15 If the actual field, V (x), for which one wants to estimate the polyspectra
is real, due to its Hermitian properties, only half of the Fourier space will
contain unique information about the field and the other half can be created
using the condition V

⇤
(k) = V (�k).

In this algorithm, the first three for loops determine all possi-
ble values of the three components of the k1 vector, and the fourth
for loop determines all possible values of the one component of the
k2 vector. The other two components of the k2 vector are fixed by
Equations 16 and 17 for a given k1 vector, and a single compo-
nent of the k2 vector. The k3 vector is determined using the clo-
sure condition of the triangle. Once all components of k1, k2 and
k3 vectors are determined, one can take the product of the �(k)s
corresponding to these three vectors, which will be a complex num-
ber (as are all �(k)s). If the actual field for which one intends to
estimate the bispectrum is real it can easily be shown (using com-
plex algebra and the Hermitian condition mentioned before) that
the bispectrum will also be real. Thus, we take only the real part
of this complex product as our bispectrum contribution to each bin.
We also estimate the power spectrum contribution from each of the
three arms of the triangle in three separate bins, corresponding to
P (k1), P (k2) and P (k3). In these power spectrum bins only k vec-
tors which satisfy the closure condition of Equation 1 contribute,
and we use these P (k)s to estimate the Perturbation theory expec-
tation for the bispectrum of N-body density fields as described by
Equation 18 in Section 3.2.

This particular algorithm for direct estimation of bispectrum
is very restrictive in nature when compared to the fast algorithm
upon which this paper is focused. While the fast algorithm allows
any kind of bin width around the target k1, k2 and k3 vectors, cor-
responding to a specific triangle configuration, in this direct algo-
rithm one can only put a bin width around k1 but it is not possible
to put any bin widths around k2 and k3, as their components are
determined precisely by Equations 16, 17 and the closure condi-
tion of a triangle for a specific set of components of k1. Due to this
difference in the nature of binning in these two algorithms, they
will be probing bispectrum for a slightly different sets of triangles,
when averaged across their respective k bins. We thus do not expect
a direct one-to-one exact match/correspondence between these two
methods while comparing the bispectrum estimated by them.

3.2 Non-linear density field - A slightly non-Gaussian test
case

In testing our FFT estimator, it is useful to have theoretical predic-
tions of the bispectrum with which to draw comparison. As such, it
is useful to consider the bispectrum of the density field.

Perturbation theory describes the initial density field with a
background term, and perturbative terms. Whilst the background
term will have a vanishing three-point correlation function and bis-
pectrum, the perturbative terms which evolve in a non-linear man-
ner under gravity will exhibit non Gaussianities. Fry (1984) use
perturbation theory, to second order (or tree level), to make a pre-
diction for the k dependence on the bispectrum of the matter den-
sity field, finding that,

B(k1, k2, k3) = 2F (k1, k2)P (k1)P (k2) + (cyc.)

F (k1, k2) =

✓
1 + 

2

◆
+

✓
k1 · k2

2k1k2

◆✓
k1
k2

+

k2
k1

◆

+

✓
1� 

2

◆✓
k1 · k2

k1k2

◆2

,

(18)

where  = 3/7⌦
�1/143
m as appropriate for a ⇤CDM cosmol-

ogy (Scoccimarro 2000). This tree-level bispectrum prediction has
been shown to under predict the bispectrum as measured from N-
body simulations. This is especially true for scales corresponding
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e.g. Neural Networks to identify astrophysics parameters from shape 
     of power spectrum

Machine learning?

Can also use ML for inversion (rather than Bayesian inference)

Shimabukuro & Semelin 2017Analysing the 21cm signal from the Epoch of Reionization with artificial neural networks 7
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Figure 7. Comparing the EoR model parameter values computed
by the ANN against the values used in the simulation using the
PS at z = 9, 10, and 11 as input data and including both thermal
noise and sample variance.

is not obvious at a glance. In order to quantify the difference,
we compute the χ2 value:

χ2 =
Ntest
∑

i=1

(θANN − θtrue)2

θtrue
(14)

θANN is the Rmfp, Tvir, ζ reconstructed by the ANN and
θtrue is the value of the corresponding parameter used in the
simulation. In table.1, we compare the χ2 values for each of
the parameters, with and without noise. As wee can see, the
χ2 values for the 21cm PS with noises are worse than those
without noises. Noise alters the efficiency of the learning
process for the ANN.

Until now we have used as input data for the ANN the
21cm PS at a single redshift. We now expand our input
datas to take the redshift evolution of the 21cm PS into ac-
count. We use the 21cm PS, which includes thermal noise
and sample variance, at three redshifts z = 9, 10 and 11 as
input datas for the training and test datasets. Thus each
set as 14×3 input values and the number of neurons in the
input layer is also 14×3=42. We also increase the number
of neurons from 14 to 42 in the hidden layer. Note that the
number of training datasets is unchanged. In Fig.7, we show
parameter values computed by the ANN as functions of the
values used in the simulations when the ANN is using the
21cm PS at three different redshifts. Compared with the
single redshift case, it seems that the scatter is smaller. We
quantify this in table.1, and check that the scatter is indeed
smaller for all three parameters. The reason why using the
21cm PS at multiple redshifts improves the accuracy of the
ANN results is simply that we increase the information the
ANN has to work with. At each redshift, the dependence
and sensitivity of the 21cm PS on the parameters is differ-
ent. Therefore, the trained network can learn much more if
we consider the redshift evolution of the 21cm PS. We also
notice that the chi-square values obtained by using multiple
redshifts and including noise are smaller than those for a
single redshift without any noise.

We next check the influence of the size of the training
sample. If we reduce the number of training datasets, we
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Figure 8. The EoR model parameter values computed by the
ANN for the PS against the values used in the simulation at z=9,
using only 20 training datasets during the learning process.

expect that the learning efficiency of the ANN will decrease.
To check this, we train the ANN with a subsample of the
training datasets (Ntrain=20). We show the results in Fig.8.
As expected, we can see that the scatter of reconstructed pa-
rameter values is larger when using fewer training datasets.
This is quantitified in table.1. In particular, the scatter of
Rmfp increases more than for the other parameters. This is
connected to the fact already established that the PS is not
very sensitive to Rmfp. Thus the size of the learning sample
is crucial to make accurate EoR parameter predictions from
observed data.

5 SUMMARY & DISCUSSION

In this paper, we applied artificial neural network (ANN)
to estimate EoR parameters from the 21cm power spec-
trum (PS) . We used 21cmFAST to produce 21cm PS for dif-
ferent values of the following parameters: Rmfp, ζ and Tvir.
We ran 70 simulations, that provided us with 70 training
datasets made of the 21cm PS and the corresponding EoR
parameter values. With these datasets, we trained the ANN,
which consists of an input layer, one hidden layer and an out-
put layer. We achieved the training by applying the back-
propagation algorithm.

In order to estimate the quality of the learning pro-
cess of the ANN, we first show the root mean square er-
ror (RMSE) for the training datasets depends on the num-
ber of iterations of the back-propagation algorithm and on
the number of neurons in the hidden layer. We found that
the back-propagation algorithm converges as the number of
iteration increases and weakly depends on the number of
neurons in the hidden layer.

We next applied the trained network to test datasets
made of the 21cm PS at a single redshift including or not
thermal noise and sample variance. As expected, we found
that the chi-square values for the ANN-recovered values of
the parameters as functions of the true (simulation) values
are larger when including thermal noise and sample variance.
We also found that the ζ and Tvir values obtained by the
ANN were a better match to the true values than for Rmfp

MNRAS 000, 1–10 (0000)
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Beyond LOFAR… SKA

• Project momentum excellent:
– Preliminary Design Reviews completed
– Critical Design Reviews scheduled
– IGO formal negotiations in progress

• SKA construction is on the horizon

SKA status

Construction proposal
Commissioning … Early 

Science

Construction SKA1

• International headquarters at Jodrell Bank

• SKA will be the premier radio telescope 
facility with science case ranging from cradle 
of life, through cosmology, to epoch of 
reionization

• Cost control exercise currently underway

• Form IGO 2019  
Commissioning/Early science 2021-2024 
Key science projects 2024-29

• MID - dishes (SA) - 250MHz - 20 GHz;  
LOW - antennae (AU) - 50-350MHz

SKAO
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Conclusions
• Reionization is still interesting! CMB, HST, and LAE surveys seem to 

indicate interesting behaviour at z~7
• LOFAR, MWA, PAPER are all confronting data with increasingly mature 

analysis pipelines. Still much to be done.
• 21 cm upper limits are beginning to make contact with plausible (if 

extreme) models
• Imaging will become interesting with SKA e.g. granulometry an for 

measuring bubble size distributions
• Power spectrum easiest statistic to work with currently
• Application of emulation may prove a useful conduit between full 

numerical simulations and Bayesian analysis
• Other non-Gaussian statistics also useful e.g. bispectrum. Need to be 

fast to evaluate to include in analysis pipelines 
• Fruitful to apply machine learning techniques 
• SKA finalising design with construction expected to begin ~2019



Fin
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Science from 21 cm
Analysis more complicated than for, say, CMB because 
 
1) No complete and agreed upon model of reionization 
    - each simulation uses different parametrization & methods 
    - different prescriptions for sources and sinks of photons 
    - no guarantee that any are “correct” 
    - unclear any one simulation covers all possibilities

2) Not clear simple statistics e.g. power spectrum capture all information  
 
3) Evaluation of models is computationally expensive 
    - full hydro + RT requires hundreds of hours of super-computer time  

Strategies:
1) Analytic models
2) Semi-numerical codes - e.g. 21cmFAST, Simfast21, …
3) Emulation
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(3) 21cm Forest

21cm Forest with the SKA Gianni Bernardi

Figure 1: Upper panels: Spectrum of a radio source positioned at z= 10 (ν ∼ 129 MHz), with a power-law
index α = 1.05 and a flux density J = 50 mJy (left hand panels) and 10 mJy (right hand panel). The red
dotted lines refer to the instrinsic spectrum of the radio source, Sin; the blue dashed lines to the simulated
spectrum for 21cm absorption, Sabs (in a universe where neutral regions remain cold); and the black solid
lines to the spectrum for 21cm absorption as it would be seen with an observation time tint = 1000 h and a
frequency resolution ∆ν = 10 kHz. The first panel to the left corresponds to a case with the LOFAR noise,
while the other two panels have 1/10th of the LOFAR noise, roughly expected for SKA1-low. Lower panels:
The ratio σabs/σobs corresponding to the upper panels.

on the 21cm forest (e.g. Carilli, Gnedin & Owen 2002; Mack & Wyithe 2012; Ciardi et al. 2013),
the intrinsic radio source spectrum, Sin, is assumed to be similar to Cygnus A, with a power-
law with index α = 1.05 and a flux density J = 50 mJy and 10 mJy. The simulated absorption
spectrum, Sabs, is calculated from the simulations mentioned above. The observed spectrum, Sobs,
is calculated assuming an observation time tint= 1000 h with the LOFAR and SKA1-low telescopes
and a bandwidth ∆ν = 10 kHz. A clear absorption signal is observed. This is more evident in the
lower panels of Figure 1, which show the quantity σabs/σobs, where σi = Si− Sin and i=abs, obs.
As already mentioned above, the inclusion of Ly-α or x-ray heating could suppress or reduce the
absoprtion features, with the extent of the effect being highly dependent on the source model (see
e.g. Mack & Wyithe 2012; Ciardi et al. 2013).

Very strong absorption features could be easily detected also at lower redshift, when most of
the IGM is in a highly ionization state, if we were lucky enough to intercept high density cold
pockets of gas (with τ21cm > 0.1; these cells are found in ∼ 0.1% of the LOS in the simulation), as
shown in Figure 2.

Moving towards higher redshift, when most of the gas in the IGM is still neutral and relatively
cold, would offer the chance of detecting a stronger average absorption (rather than the single
absorption features observed at lower redshift). If a radio source with characteristics similar to the
ones described above were found, SKA1-low would easily detect the global absorption as shown
in Figure 3, although it would not be straightforward to distinguish whether the suppression of the

4

LOFAR SKA

50mJy source 
@z=10

Ciardi+ 2015

IF find z>6 radio bright QSOs or other radio bright objects e.g. GRB

10kHz resolved spectra of 21cm forest in bright radio sources at z>6

Resolve ~kpc scale structures in IGM
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Overview

• Reionization

• CMB constraints of 
reionization

• 21 cm observations 

• CMB optical depth from  
21cm 

Reionization

CMB

Dark ages

Cosmic Dawn

Galaxy 
formation
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SKA-LOW observing strategy
Deep:    5    x 1000hr integration  => 100 deg2 field
Middle:  50   x 100hr integration   => 1,000 deg2 field 
Shallow: 500 x 10hr integration     => 10,000 deg2 field
IM:         50  x 100hr integration   =>  1,000 deg2 field 

Shallow: LOFAR-like power spectrum sensitivity over 10000 deg2.
Middle: Shallow imaging + power spectrum over 1000 deg2

Deep:  Power spectrum to z<27 & deep imaging over 100 deg2

IM: OmegaHI & cosmology at 3<z<6 over 1000 deg2

Key frequencies: 200-50MHz
Wider band for foregrounds
(multibeaming to reduce tint)

Koopmans+ 2015
[arXiv1505.07568]

Single pointing 
 ~ 20 deg2
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(4) Intensity mapping at 3<z<6

Preliminary calculation

Pourtsidou+

Intensity mapping with LOW for OmegaHI & cosmology
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More needed...

QSO

redshift=

Age of Universe=

∫
CMB

Existing observations leaves much unanswered:
1) Lyman-alpha forest: end point z>6.5
2) CMB optical depth: mid point z~11 (Revised down by Planck to z~8.8±1.5)
3) kSZ amplitude: duration z<4.4 ?

HST probes skewer much smaller than scale of ionized regions + only brightest sources

Fundamental need for new types of observation to understand details of reionization

HUDF

Large galaxy samples with LAE surveys or Euclid possible to z~8
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Euclid synergies?
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5deg2

• z=8 QSO to find those that are radio loud
• Bright galaxies for stacking
• LAE - 21cm cross-correlation as probe of HII region sizes
• ???
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Conclusions

•  SKA1 should begin commissioning/early science in 2021 with  
full operations in ~2024. (c.f. Euclid 2021-27)

• Taking shape now - cost control exercise, IGO, …

• EoR plans HI surveys at z = 3 - 27  
- SHALLOW - 10,000 deg2 at LOFAR like sensitivity, z~7-15  
- MEDIUM + IM - 5000 deg2 z ~ 3-20  
- DEEP - 100 deg2, z~6-27

•  Synergies with Euclid from both MID and LOW  
- MID better matched to low redshifts z<3 (Pourtsidou talk)  
- LOW for 3<z<27

•  For reionisation:  
- LAE-21cm cross correlations; Stack on LBGs?  
- High-z quasars for radio follow up  
- OmegaHI  
- ???

•  SKA-EoR Science Team preparing for KSP bid in ~2019  
Synergy focus group leads: Pratika Dayal, Erik Zackrisson
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Figure 1: Flow-diagram for End-to-End data simulations. 
 
The proposed set of specifications that we aim for in the first set of simulations are                
summarized below, although details should be further worked out in the coming            
months by the MT and FG coordinators: 
 

1) Frequency band and resolution: Two 10-MHz bandwidth simulation boxes         
centered at 70 MHz (CD) and 150 MHz (EoR), respectively, with 100 kHz             
spectral resolution (i.e. 100 channels). We assume at this point that the 21-cm             
signal can be simulated separate from the foregrounds, and without applying           
any residual instrumental errors (assumed small after calibration) to the 21-cm           
signal. These will only be applied to the foregrounds, which dominate the            
signal power, and hence residual error although small for the foregrounds can            
be large for the 21-cm signal. This approach could (initially) decouple the            
production of 21-cm signal cubes from that of the foregrounds and           
instrumental effects. In reality the 21-cm signal will be affected by processing            
errors as well, but only at a second-order level. In case simulations can be              
produced fast (although OSKAR needs GPU’s to run and simulations will be            
large [35TB]), we can reconsider this and include the 21-cm signal in the             
simulations directly in future simulations. 

2) Integration time/long-track: ​Time-steps in visibility will initially be 10         
seconds, in order to reduce computations and storage requirements. One can           
add short-term ionospheric effects after averaging (i.e. scintillation noise and          
down-averaging of the visibilities). The ionospheric coherence function as         
function of time, frequency, baseline, direction and baseline offset will be used            
to generate ionospheric phase and amplitude errors that will be added to the             

https://sites.google.com/site/skacdeorscienceteam/home

Focus on pipelines
at present

Interest in synergy
Contacts: 
Pratika Dayal
Erik Zackrisson

Various focus groups studying aspects of doing 21cm with SKA

KSP bid in ~2019
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Other SKA-Euclid Synergies
•Cosmology (MID)  
- galaxy surveys - SKA1: Continuum, HI IM; SKA2: HI  
- weak lensing with SKA2 - different systematics  
(think 5000 deg2 survey)  

•Reionization (LOW)  
- 21cm - LAE cross correlation  
- stack on bright galaxies at high-z  
- Radio loud quasars at z>6 (especially z~8)  
- HI intensity mapping at 3<z<6  

•General  
LOW (50-350 MHz),  
MID - Band 1 (580-1015MHz), Band 2 (0.9 - 1.67 GHz),  
          Band 5 (8-13.8GHz)
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21cm Forest requires radio bright sources at z>7 
- QSO  
- GRB

Euclid will be key for providing z~8 QSOs (hopefully some radio loud)

z~8 quasars

8 S. Manti, S. Gallerani, A. Ferrara, B. Greig, C. Feruglio

Figure 5. Predicted sky surface density of quasars brighter than the H magnitude limit, in the three redshift bins 6 < z < 7, 7 < z < 8,
and z > 8, using both a power-law (black curve) and a Schechter luminosity function (blue curve). The red and green hatched areas
indicate the uncertainty related to luminosity functions, in the DPL and Schechter case respectively, while the grey shaded regions
represent the most conservative uncertainty on the predicted number counts. The symbols show the H-band limiting magnitudes (at
10σ detection) for the different surveys and the expected number density on the sky. In the redshift bin 6 < z < 7, the black diamond
represents the result from Venemans et al. (2013; V13) with the corresponding 2σ error bar, while the light grey shaded area indicates
the 2σ uncertainty on the QSO sky surface density (considering both the DPL and Schechter functions).

in the units of critical density, respectively. Furthermore, ∆z
is the redshift interval covered by the total bandwidth ∆ν
of the instrument under consideration:

∆z = νRF

(

∆ν
ν2
obs − 0.25∆ν2

)

, (13)

where νobs = νRF/(1 + z) is the observed frequency (νRF is
the rest-frame frequency).

Figure 5 shows our predicted sky surface density of high-
z quasars brighter than the H magnitude limit, in the three
redshift bins 6 < z < 7, 7 < z < 8, and z > 8, ob-
tained with either a double power-law (black curve) or a
Schechter luminosity function (blue curve). The red and
green hatched regions correspond to the uncertainties re-
sulting from the Monte-Carlo sampling (see Sec. 2), in the
DPL and Schechter case respectively. As in Fig. 3, we must
consider as a conservative uncertainty on the expected num-
ber counts the region between the lower limit in the DPL
and the upper limit in the Schechter case (grey shaded areas
in Fig. 5).
In the first panel of Fig. 5, the black diamond represents
the result from Venemans et al. (2013) with the correspond-
ing 2σ error bar, while the light grey shaded area indicates
the 2σ uncertainty on the sky surface density in the range
6 < z < 7 (considering both the DPL and Schechter func-
tions).

As in Sec. 2, we note that the difference between our pre-
dictions with the DPL and the Schechter function increases
with increasing redshift. The conversion between the abso-
lute magnitude M1450

AB and the observed IR magnitude H is
done using a template quasar spectrum4. In the figure, the
symbols show the H-band depth of different ongoing and
future near-IR surveys and the sky density necessary for

4 We approximate quasars with a pure power-law spectrum with
frequency index αν = −0.5.

them to detect one quasar in the redshift slice. The surveys
we consider here are those which could potentially discover
high-z quasars, i.e. cover sufficient depth and area atH band
to detect such kind of sources5 (Willott et al. 2010). These
are:

• UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence
et al. 2007): the Large Area Survey (LAS: 4028 deg2 to H =
19.2; Dye et al. 2006) and the Ultra Deep Survey (UDS: 0.77
deg2 to H = 24.4; Dye et al. 2006);

• ESO VISTA Telescope surveys (Sutherland 2009): the
VISTA Hemisphere Survey (VHS: 5000 deg2 to H = 19.9),
the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING:
1500 deg2 to H = 20.8), the VISTA Deep Extragalactic
Observations Survey (VIDEO: 15 deg2 to H = 23.7) and
the UltraVISTA (U-Vista: 0.73 deg2 to H = 25.4);

• EUCLID-wide imaging survey (20000 deg2 toH = 23.3,
for weak lensing) and deep imaging survey (30 deg2 to H =
25.3, for supernovae);

• WFIRST High Latitude Survey (WFIRST-HLS: 2000
deg2 to H = 27; Spergel et al. 2013, 2014).

The results show that in 6 < z < 7, the UDS is expected
to detect ∼ 1 quasar, while the LAS may contain ! 1 quasars
(this can be considered as a lower limit; see Mortlock et al.
2012). Furthermore, due to the steepening of the bright end
of the luminosity function at higher redshifts, the chances of
detection with both UKIDSS surveys are very poor at z > 7.
Regarding the VISTA surveys, we expect to find ∼ 1 quasar
with each of them at 6 < z < 7, while it is very unlikely for
the four surveys to find any higher redshift sources.
Furthermore, from the first panel of Fig. 5, we note that,
although our predictions are below the V13 results, we are
still consistent at ∼ 2σ with their observations.

5 All the H-band limiting magnitudes correspond to a depth of
10σ.

c⃝ 2015 RAS, MNRAS 000, ??–??

Manti+ 2017


