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The foregrounds are expected to be orders of magnitude larger than the EoR signal

Extragalactic Point Sources (PS)
radio galaxies, AGNE, ...

EPOCH OF
HEIONIZATION

Galactic and Extragalactic

free-free
low frequency radio background
produced by bremsstrahlung
radiation from electron-ion

collisions

EXTRAGALACTIC
FOREGROUNDS

GALACTIC
FOREGROUNDS

- Galactic synchrotron (dominant foreground)
cosmic ray electrons interacting with the galactic magnetic field.
Linearly polarised.
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Why is it important?

- spectral smoothness key for proper foreground subtraction
+ polarised synchrotron non trivial frequency structure
- can leak 1n the unpolarised part due to instrumental

and calibration issues
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.2 Burn (1966)

» Depends on B | to the LOS modulated by the density of cosmic electron
» CR power law energy density: n(E) ~ E*-p

Synchrotron ge

- Diffuse polarised emission:

P =1lgle*? with ¢ = ¢go+ (s, D)\
faraday rotation given by B// and the presence of thermal electrons

3
v=73

€

/ neB|dr  faraday depth or
LOS

212
m(mec?) Rotation Measure (RM)

@ EoR frequencies P simulations are difficult:

- lack of correlation with total intensity
- not a lot of polarised data at low frequencies
- depolarisation effects prevent extrapolation from higher frequencies
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e.g Bretjens&Bruyn (2005)
Heald, Brown&Edmonds (2009)

Use Fourier relation between polarised surface brightness (P)
and surface brightness per unit of Faraday depth F

Inverting this formula:

- only positive lambda have physical meaning
» and incomplete sampling in lambda”2

Need to define a RM transfer function (RMTF) that gives the
resolution in Faraday depth:

FWHM ~ (Delta lambda”2)"-1 total bandwidth
lack of sensitivity to structures extended in Faraday depth
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Use RM synthesis framework:

 generate full-sky gaussian Q,U maps in RM space
with specific power spectrum

Q(O,0,0) =Y Gem(1)Yem (0, 0)

(o () @y (1)) = (27)2C 000 s = (2)2A ()£~

e transform back to frequency space using the Fourier
relation between RM and lambda”2

Q(6,6,)2) = / 00, 6,)e ¥ dy

we use MWA data to constraint free parameters

(but we can use other data)



MWA data @18
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« MWA 32 element 2400 degrees

* RM synthesis .50 < RM < +50 rad m~-2

cube of polarised images at in step of 1 rad m”-2
selected faraday depth RMTF 4.3 rad m"-2

» describe MWA statistical behaviour and extend it to full-sky

- CON s: fine and local structures impossible to catch
- PROs: using genuine polarisation data instead of intensity
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« maps at RM=+50, -50 as

proxy for the noise

- retain only maps with S/N
greater than 2: the interval

-18< RM <+23

0.14

§/N

- At fixed RM, the data can be
approximated with a Rayleigh distribution

R(sigma)

- the value of sigma fix the global level of

the final map A (w)
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 Consider P maps as a function of RM

+ Power Spectrum reconstruction with
HEALPIX (Gorski et al. 2005) and
MASTER (Hivon et al. 2002)
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- Fit a power law behaviour considering
cosmic variance on large scale and
noise on small scales (Tegmark 1997)
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+ We obtained A (7)) from MWA data
- Fit power law to extract the one for Q, U / —a(i))

we simulate a RM-cube and then transform back to frequency space

— || T_b as a function of
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- Polarised foregrounds are a potential 1ssue for EoR signal detection
(even 1f now less worrying than before?)

- Lack of data and de-correlation from intensity make simulations a
complicated task

« We use RM synthesis MWA data (@ 189 MHz

- Characterise some global statistical properties and extend them to
simulate a full-sky RM-cube

- Transform back the RM-cube to frequency space

+ Including forthcoming larger area observations

- Find data to better characterise the galactic plane

- Test the maps 1n cleaning pipelines (to have a better understanding
on how much we should fear polarised synchrotron)
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Mean and std of the P maps as a function of RM for the
data (in red) vs. simulation (in blue)
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* MWA data characterised by power law P but we generate Q, U
 simple brute force Monte Carlo method to find the power law for
Q, U given the one for P

Example: beta=-1.2
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