The search for radio emission from exoplanets using LOFAR low-frequency beamformed observations

Jake Turner

Graduate Research Fellowship Program

University of Virginia

Laboratoire de Physique et Chemie de l'Environment et de l'Espace (LPC2E)

The Broad Impact of Low Frequency Observing June 19, 2017

Collaborators:

Philippe Zarka (LESIA – Paris Observatory) Jean-Mathias Grießmeier (LPC2E)

Overview

- Exoplanet Magnetic Fields
- Radio Observations of Exoplanets
- Our LOFAR Observing Campaign
 - Data Pipeline (Turner+ 2017, submitted)
 - -Jupiter Observations
 - Jupiter as an exoplanet (Turner+ 2017, in prep)
 - Preliminary results on 55 Cnc (Turner+ 2017, submitted)

Exoplanet Magnetic Fields Motivation

- Formation and evolution
- Interior structure
- Rotation period
- Atmospheric evolution and escape
- Ohmic heating
- Star-planet Interactions
- Moons
- Solar System comparison
- Habitability

Lazio+ 2010, Grießmeier+ 2005, Rauscher+

2010, Hess & Zarka 2011, Grießmeier 2015,

Zarka+2015

Radio Observations

- Electron cyclotron emission in radio
- Best method to study planetary magnetic fields (Grießmeier 2015)

Radio Flux & Frequency Predictions

Predicted maximum emission frequency for rotationindependent
planetary magnetic
field and expected
radio flux for
known planets

Jake Turner (University of Virginia)

LOFAR Observations

- v: 26-73 MHz
- IQUV Polarization
- Raw Res: 10 msec & 3 kHz
- 9 arcmin resolution
- 16 mJy sensitivity: 2 mins over full band
- Observational Campaign:
 - 4 exoplanets so far
 - 3 Beams
 - Over full orbital phase

Turner+ 2017 (submitted)

Jake Turner (University of Virginia)

Low Frequency: June 19, 2017

LOFAR Pipeline

Raw

Turner+ 2017 (submitted)

Jake Turner (University of Virginia)

LOFAR Pipeline

Raw

Normalized+ RFI mitigation

LOFAR Pipeline: Block Diagram

Preliminary Results: Pulsar

- Pulsar B0823+26 is detected at high S/N at known period
- Brightness of pulsar changes with time (known previously).

Turner+ 2017 (submitted)

Jupiter Observations

- Scale Jupiter radio emission from LOFAR as if it was an exoplanet (reduce flux by 10⁻³ – 10⁻⁶).
- Produce a set of observables that can be used as a guideline in the search exoplanetary radio emission

Observables

Jake Turner (University of Virginia)

55 Cnc Planetary System

- One of best targets for radio observations due small orbital distance, proximity (12.3 pc), and multiplicity (Grießmeier+ 2007).
- Emission from 55 Cnc e possible: tens of MHz with flux densities up to hundreds of mJy (Grießmeier+ 2007, Jardine+ 2008).

Jake Turner (University of Virginia)

55 Cnc Preliminary Results:

- Do not

 observe
 broadband
 emission from
 55 Cnc
- Full dataset
 needs to be
 analyzed
 Total of 18
 hours

Turner+ 2017 (submitted)

Conclusions

- Radio observations are the best way to study exoplanet magnetic fields
- LOFAR data is stable and sensitive enough to detect astrophysical signals from the pulsar
- We observed Jupiter as if it was an exoplanet and developed a set of observables as guides
- Initial analysis of 4 hours of LOFAR 55 Cnc e data do no show an exoplanet signal
- The rest of the observational campaign is undergoing analysis