THE FIRST DETECTIONS OF RADIO RECOMBINATION LINES AT COSMOLOGICAL DISTANCES

KIMBERLY EMIG

LEIDEN OBSERVATORY

RAYMOND OONK, PEDRO SALAS, M.CARMEN TORIBIO, HUUB ROTTGERING, XANDER TIELENS

BROAD IMPACT OF LOW FREQUENCY OBSERVING THE FIRST DETECTIONS OF RADIO RECOMBINATION LINES AT COSMOLOGICAL DISTANCES

KIMBERLY EMIG

LEIDEN OBSERVATORY

RADIO RECOMBINATION LINES

Physical mechanism:

- electron recombination at high quantum levels (n~500)
- low energy transitions (small Δn)

RADIO RECOMBINATION LINES

Physical mechanism:

- electron recombination at high quantum levels (n~500)
- low energy transitions (small Δn)

Low frequencies (<500 MHz):

- carbon lines
- <u>cold</u> (T_e ~ 50 100 K)
 <u>diffuse</u> (n_e ~ 0.01 0.1 cm⁻³)
- purely stimulated, observe to high z

- line profile
- central velocity + spatial resolution
- integrated optical depth

- line profile
- central velocity + spatial resolution
- integrated optical depth

- line profile
- central velocity + spatial resolution
- integrated optical depth

$$\int \frac{I_{\text{line}}}{I_{\text{cont}}} \mathrm{d}\nu \propto -(b_n \beta_n) T_e^{-5/2} n_e^2 l$$

- line profile
- central velocity + spatial resolution
- integrated optical depth

- line profile
- central velocity + spatial resolution
- integrated optical depth

- line profile
- central velocity + spatial resolution
- integrated optical depth

KEY INSIGHTS FROM CRRL

- 1. Detection alone is indicative of cold, neutral gas
- 2. Probe conditions of gas in AGN environment and/or host galaxy
- 3. Construct physical model, with properties of atomic gas

DETECTING EXTRAGALACTIC CRRL

- frequencies < 500 MHz
- peak optical depths $\sim 10^{-3} 10^{-4}$
- detections now possible
 - wide bandwidth
 - sensitivity
 - high resolution

LOFAR DETECTIONS IN M82

CRRL AT COSMOLOGICAL DISTANCES

- bright (> few Jy in HBA)
- HI absorber
- compact
- steep spectrum

DATA PROCESSING

About pipeline

- LOFAR core stations
 - resolution ~2arcmin
 - same ionosphere
- direction-independent
- channel images 2-3x
 thermal noise
- spectral rms 10⁻³

Essential for processing SURFSara NL grid ~few days processing DPPP, WSClean, LoSoTo

6 KHZ CHANNEL IMAGE 10 MJY/BEAM 3X THERMAL NOISE

SPECTRAL PROCESSING

30–40 lines between 115-162 MHz 20–25 lines to stack (RFI and lines falling on channel edge)

3C 190 DETECTION

S(150 MHz) ~ 20 Jy 16 lines stack center, z = 1.196v_{FWHM} = 88 km/s effective frequency = 133 MHz effective quantum number, n = 287

<u>3C 190</u>

- $z_{opt} = 1.195$
- center galaxy of a group
- HI absorption from jet interaction
- in-falling foreground absorber

FIG. 4.—Spectrum of 3C 190 (the quasar itself). The absorption lines all appear to come from a single system close to the quasar redshift.

In-falling foreground absorber at z = 1.196Stockton & Ridgway 2001

HI absorption blue shifted, outflow from jet Ishwara-Chandra et al. 2003

3C 293 DETECTION

S(150 MHz) ~ 15 Jy 12 lines stack center, z = 0.045 $v_{FWHM} = 40$ km/s effective frequency = 127 MHz effective quantum number, n = 371

confirmed with two observations blue = 4 hr green = 2.5 hr

 $z_{opt} = 0.045$

HI absorption, v_{FWHM} ~ 40 km/s

CO absorption, v_{FWHM} ~ 40 km/s

Next steps for extra-gal CRRL - Follow up observations

Follow up observations LOFAR Tier 1 Survey

TAKE AWAY MESSAGES

- first CRRL detections out to high z + in AGN
 - ► 3C 190
 - 3C 293
 - 4C 29.30 + field
- CRRL can probe atomic gas out to high redshifts
- follow up observations will provide the physical conditions

Grazie e buon appetito!