

Tracing multiple AGN outbursts at low frequency in cool-core clusters

Simona Giacintucci Naval Research Laboratory

Maxim Markevitch (GSFC), Tracy Clarke (NRL), Matteo Murgia (INAF-OAC), T. Venturi (INAF-IRA)

The Broad Impact of Low Frequency Observing, Bologna June 19-23, 2017

Radio bubbles in cool-core clusters

Perseus (3C84) Hydra A MS 0735.6+7421 Kirkpatrick et al. 2009 Fabian et al. 2005 McNamara et al. 2005 Magenta: radio emission

Radio minihalos in cool-core clusters

Diffuse radio emission on cluster core scale (r ~50 - 300 kpc), possibly linked to turbulence in the cool core (Gitti et al. 2002, ZuHone et al. 2013)

Radio minihalos in cool-core clusters

Gendron-Marsolais et al. 2017

Giacintucci et al. 2017

Almost all cool cores (~80%) in massive clusters possess a minihalo

The galaxy clusters A496 and 2A0335+096

Dupke & White 2003, Dupke et al. 2007 Ghizzardi et al 2014

Mazzotta et al. 2003, Sanders et al. 2009

U.S. NAVA

X-ray blobs and cavities in the cool core

S. Giacintucci

Central active radio galaxy

S. Giacintucci

U.S. NAVAL RESEARCH LABORATORY

Is there any radio emission in the cavities?

S. Giacintucci

U.S. NAVAL RESEARCH

U.S.NAVAL RESEARCH

Radio data

A496

GMRT 150 MHz (3 TGSS pointings)

GMRT 327 MHz

VLITE 340 MHz

GMRT 610 MHz

VLA 1.4 GHz A, B and C configurations

VLA 5 GHz A, B and D configurations

GMRT 150 MHz (TGSS ADR) GMRT 240 MHz VLA 325 MHz GMRT 610 MHz GMRT 1.3 GHz MERLIN 1.4 GHz VLA 1.4 GHz A, B, C and D configurations VLA 5 GHz C and D configurations VLA 8 GHz B and C configurations

2A 0335

* VLA Low-band Ionosphere and Transient Experiment (see Tracy Clarke's poster)

Extended radio emission in the cavities

U.S.NAVAL

Relic lobes from past radio outburst

U.S. NAVA

Relic lobes from an even older radio outburst?

U.S.NAVAL RESEARCH LABORATORY

Relic lobes from an even older radio outburst

S. Giacintucci

Relic lobes from an even older radio outburst

2A 0335

for $B_{min} = 10 \ \mu Gauss$

 $t_s \sim 60 \text{ Myr}$

S. Giacintucci

U.S.NAVAL RESEARCH LABORATORY

A history of 3 AGN outbursts

Size < 0.3 kpc

Size 20 kpc

III. Even older activity

The minihalo in 2A 0335+096

Sanders et. 2009

see also Sarazin et al. 1995

Minihalo spectrum

The minihalo spectrum is flatter than the spectrum of the relic lobes

ageing electrons

U.S.NAVAL

RESEARCH LABORATORY

ageing electrons

reaccelerated electrons

Thank you

