## LOFAR for Lightning Interferometry and Mapping

Brian Hare

A. Bonardi, S. Buitink, A. Cornstanje, U. Ebert, H. Falcke, J.R. Hörandel, P. Mitra, K. Mulrey, A. Nelles, J.P. Rachen, L. Rossetto, C. Rutjes, P. Schellart, O. Scholten, S. Thoudam, T. N. G. Trinh, S. ter Veen, T. Winchen

# Processes During Downward Negative Lightning



# Lightning Mapping Array



# Lightning Mapping Array



| LOFAR                                             | Typical<br>LMA                                     |
|---------------------------------------------------|----------------------------------------------------|
| Nanosecond timing precision                       | 70 nanosecond timing precision                     |
| Nanosecond resolution between<br>different pulses | Only the strongest pulse in 10 microseconds        |
| Save raw antenna trace data                       | Only save time and amplitude of each pulse         |
| Save Polarization Information                     | Only sensitive to z-component of<br>electric field |
| Broad band: 10 Mhz to 90 Mhz                      | Narrow band: 66 Mhz to 72 Mhz                      |
| Operates in Triggered Mode                        | Continuous Monitoring                              |

# Present Steps in Mapping Procedure

- 1) Find pulses in TBB data
- 2) Find station timing offsets
  - a) Groups pulses in a station into plane wave events
  - b) Group strongest plane wave events into point source events
  - c) Simultaneously fit locations of point source events and station timing offsets

3) Group as many pulses as possible into point source events, fit location of each event

## The 19 June 2013 Flash

#### zoomed out



#### zoomed in



### **Rich Pulse Structure**



### **Rich Pulse Structure** differences in polarization



Event 1

# Interpretation of Pulse Structure



- Each leader step could be viewed as charge jumping forward
- Each jump will produce a bipolar pulse
- Simulation (to left) shows electric field due to charge jumping forward with parameters:
  - 50 m step size
  - 200 ns rise time

• 
$$V_{max} = C/3$$

# Conclusion

• We can map lightning with LOFAR with order of magnitude better precision and resolution than typical lightning mapping arrays.

 Trace data contains rich structure in a frequency regime that is not well studied in lightning science

• LOFAR can be instrumental to making progress in lightning science