The low-frequency radio continuum—star formation rate relation in nearby galaxies with LOFAR

Volker Heesen Hamburger Sternwarte

Motivation: radio-SFR relation

- Radio continuum as an extinction free SF tracer
 - No cryogenic satellites needed
- Physical reasons behind it
 - (I) CRE (cosmic-ray electrons) calorimetry
 - (2) Energy equipartition B–CR
- Cosmic-ray transport
 - Diffusion in the disc
 - Advection in the halo (galactic wind)

LOFAR Science Meeting in Bologna, 19th June – 23rd June 2017

Star-formation surface density (SFRD)

(Leroy et al. 2008, 2012)

- GALEX FUV: young massive stars
- Spitzer 24 µm: dust emission (SF regions)
- Linear combination: FUV + 24 μ m

NGC 6946

LOFAR Science Meeting in Bologna, 19th June – 23rd June 2017

NGC 5194 (The 'Whirlpool Galaxy')

Lucia Perez

LOFAR 140 MHz

LOFAR 140 MHz

 $rms = 130 \mu Jy/beam$

FWHM = 20 arcsec rms = 350 µJy/beam

Spectral ageing of cosmic-ray electrons (CREs) Radio spectral index SFRD

Young CREs in spiral arms, old CREs in interarm regions and outskirts

Radio-SFRD relation

WSRT I.4 GHz Heesen et al. (2014)

LOFAR 140 MHz

Spatially resolved relation (1.2 kpc):

 $\Sigma_{\rm SFR,hyb} \propto \Sigma_{\rm SFR,radio}^{0.67\pm0.02}$

 $\Sigma_{\rm SFR,hyb} \propto \Sigma_{\rm SFR,radio}^{0.51\pm0.02}$

CRE diffusion causes sub-linear radio-SFRD relation

Cosmic-ray diffusion

Gaussian convolution kernel (at 1.4 GHz) FWHM = 3.4 kpc ----> 1.7 kpc diffusion length (Berkhuijsen et al. 2013; Tabatabaei et al. 2013; Heesen et al. 2014)

LOFAR Meeting in Onsala, 30th May – 2nd June 2017

NGC 5055 (The 'Sunflower Galaxy')

SFRD

Cierra Huff

Spectral Index

 $\Sigma_{\rm SFR,hyb} \propto \Sigma_{\rm SFR,radio}^{0.64\pm0.02}$

NGC 3184

Jacob Woolsey

LOFAR

FWHM = 15 arcsec rms = 300 µJy/beam

SFRD

Spectral Index

$\Sigma_{\rm SFR,hyb} \propto \Sigma_{\rm SFR,radio}^{0.23\pm0.02}$

NGC 4736 LOFAR

SFRD

Edward Buie II

 $0 > \alpha > -0.75$

 $-1.2 > \alpha$

Condon

10⁻¹

-0.75 >= α >= -1.2

10⁻²

 $(\Sigma_{\rm SFR})_{\rm hyb}$ [M $_{\odot}$ yr⁻¹ kpc⁻²]

10⁻³

WSRT 1400 MHz: $\rm SFR_{hyb} \propto \rm SFR_{radio}^{0.75\pm0.03}$

IC 10: a starburst dwarf galaxy

HI

Halpha

Facet

Heesen et al. 2017, in prep.

Consistency with other data

Heesen et al. 2017, in prep.

LOFAR 140 MHz

GMRT 325 MHz

VLA 1600 MHz

Structure is broadly consistent with higher frequencies

- Very flat spectral index (alpha = -0.4)
- Halo is not spherical (like NGC 1569, Sridhar et al. in prep.)

Cosmic-ray transport models

(SPINNAKER, Heesen et al. 2016)

https://github.com/vheesen/Spinnaker

Conclusions

- Former results from WSRT
 - Integrated linear relation (slope=1.11+/-0.08)
 - Resolved RC–SFR relation (I kpc scale)
 - Sub-linear resolved relation (slope 0.63+/-0.25)
 - Cosmic-ray transport (spectral ageing)
- New results from LOFAR
 - RC–SFR relation even more sub-linear
 - Improved non-thermal radio spectral indices

Integrated radio-SFR relation

(Heesen, Brinks et al. 2014)

SPINNAKER cosmic-ray transport models https://github.com/vheesen/Spinnaker

Heesen et al. (2016)