

Netherlands Institute for Radio Astronomy

The physics and life-cycle of local radio AGN

Raffaella Morganti ASTRON and Kapteyn Institute (Groningen)

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

R. Morganti - Low Frequency Conference | Bologna June 2017

Low frequencies for the study of nearby **AGN: physics and impact of thes**

Radio jets/lobes affect their surrounding medium on different scales: from tens of pc to many hundred kpc e.g. cavities and outflows

Amplitude of their impact depends on a number of parameters that we can explore at low radio frequencies Hydra A

0.5-7.0 keV **330 MHz 1.4 GHz**

_ane et al. (2004),

Wise

et al. (2007

Low frequencies: energetics and the life-cycle

 \rightarrow occurrence of remnants and comparison with mock catalogues

→ restarted radio sources

Younger radio galaxies

Life of a radio galaxy

galaxies

"Adult" radio galaxies

Younger radio galaxies

Life of a radio galaxy

old (remnant) radio galaxies

"Adult" radio galaxies

older lobe

Life of a radio galaxy

restarted, young radio source

Restarted radio galaxies

old (remnant) radio galaxies

"Adult" radio galaxies

old (remnant) radio galaxies

Restarted radio galaxies

Affected by a number of uncertainties (e.g. magnetic field and its structure, injection index, energy losses....)

we need to know more about the physics and dependence on type of radio sources

High power radio sources

Energetics and magnetic field: internal conditions (via X-ray inverse Compton) and environmental information (specifically external pressure) \rightarrow linked to low frequencies \rightarrow electron dominated, relatively small deviation from equipartition, overpressure compared to external pressure

we can now use radio properties alone to estimate internal energy of FRII → to use for survey data!

Ineson et al. 2017, Croston et al. 2017

Need for resolved studies to trace injection index...

Better constrained spectrum at low frequencies.

Injection index (as derived from the lobe emission) remains **steeper** than classically assumed values even when considered on well resolved scales at low frequencies \rightarrow greater amount of energy is contained in the low-energy electron population than previously thought. Harwood et al. 2015, 2016

absorption of hotspot emission and/or non-homogeneous and additional acceleration mechanisms

See talk of Harwood

High spatial resolution is important: hot-spots in Cygnus A for nearby AGN

on the small scales, cutoff in spectrum and/or absorption

McKean et al. 2016

Low-energies cutoff model with low energy tail (dashed red) → doesn't reproduce the observations Free-free absorption (solid blue. => but high-density thermal material

High spatial resolution is important: emission processes of the X-rays knots in radio jets Dan Harris's dream...

✓ Origin of X-ray and radio emission in jets: separate synchrotron component? Or is it IC/CMB emission from a jet with significant (e.g. Г ≈10) bulk velocity on kpc scales?

 \rightarrow use LOFAR international baselines to test this

High spatial resolution is important: emission processes of the X-rays knots in radio jets Dan Harris's dream...

Origin of X-ray and radio emission in jets: separate synchrotron component? Or is it IC/CMB emission from a jet with significant (e.g. Γ ≈10) bulk velocity on kpc scales?

→ use LOFAR international baselines to test this Low frequency curvature found: indicate a spectral break or even a low energy cutoff of the electron spectrum → the IC/CMB model would require more extreme beaming parameters: larger Γ and smaller angle between the jet and the line of sight.

Lower power radio sources: the case of the (FRI) radio galaxy 3C31

✓ Combine LOFAR, GMRT, VLA

→ importance of frequency coverage
 ✓ Spectral break decreases with distance from the core
 ✓ Strong entrainment/adiabatic losses
 → deceleration of the flow

✓ B ~3µG in the tails, Mach number ~ 5 ages ~200 Myr

bridge

Heesen et al. 2017

bifurcation

LOFAR HBA 145 MHz CHANDRA X-ray SDSS r'+g'+u'-band

S tail

N tail

Understanding the life-cycle of radio AGN

See also talk of J. Callingham on "young" radio sources

Low frequencies and AGN remnants

Approachs so far:

→ Results from selection on steep spectrum (spectral curvature) → minority outside clusters → remnant phase short or similar to active phase (Parma et al. 2007, Dwaraknath & Kale 2009, van Weeren et al. 2011, Murgia et al. 2011)

General expectation → deep low frequency radio surveys will reveal an abundance of steep spectrum remnant radio galaxies

→ Results from morphology (no spectral info available) → important the sensitivity to low surface brightness: e.g. Saripalli et al.

→ episodic activity: active phase followed by a brief dying phase and restarting activity → remnants rare, restarted not so rare

Saripalli et al.

Hurley-Walker et al. 2015

"Blob1", Brienza et al. 2016 Serendipitous, field 3C380

Hurley-Walker et al. 2015

Serendipitous candidate

remnant (field J1431+14), Shulevski et al.

Hurley-Walker et al. 2015

Serendipitous candidate remnant (field J1431+14),

0.90 -58 0.75 -60 (Jy/bear Dec (J2000) 29-0.45 Jeusit 0.30⁹⁰ Elix de -64 0.15 -66 0.00 40m 20m 4h00m 40m 3h20m RA (J2000)

Shulevski et al.

Candidate remnant, Bootes field van Weeren et al. 2014

Hurley-Walker et al. 2015

A systematic search of AGN remnants

We can now select from spectral index AND morphology from the same datasets

See also poster of Marisa Brienza

Pilot study: selecting dying/remnant radio galaxies in the LOCKMAN HOLE

LOFAR image @ 150 MHz, Mahony et al. 2016

- HBA observation (110-180 MHz)
- 70 MHz bandwidth (300 subbands)
- 10 hrs int. time
- 14"x18" resolution
- rms~0.15 mJy
- about 6000 sources

Large field-of-view ideal for selecting rare objects

~5 deg

Pilot study: selecting dying/remnant radio galaxies in the LOCKMAN HOLE

LOFAR image @ 150 MHz, Mahony et al. 2016

- HBA observation (110-180 MHz)
- 70 MHz bandwidth (300 subbands)
- 10 hrs int. time
- 14"x18" resolution
- rms~0.15 mJy
- about 6000 sources

5 arcsec resolution, See poster of Jit Mandal

~5 deg

Large field-of-view ideal for selecting rare objects

SPECTRAL INDEX

alpha(150-1400) > 1.2 LOFAR-WSRT < 6.6% LOFAR-NVSS < 4.1% Despite the increased sensitivity of LOFAR, steep spectrum remnants remain RARE

Rapid luminosity evolution after the central engine has stopped?

Brienza et al. 2017

SPECTRAL INDEX

alpha(150-1400) > 1.2 LOFAR-WSRT < 6.6% LOFAR-NVSS < 4.1%

SPECTRAL CURVATURE LOFAR-WENSS-NVSS

0.5<alpha(150-325)<1 alpha(325-1400)>1.5

6 SOURCES

10 SOURCES

Search for remnants in the Lockman Hole Brienza et al. 2017

MORPHOLOGY

relaxed, low surface brightness, no compact feature in FIRST 5'' size > 60''

14 SOURCES

CORE PROMINENCE

 $S(tot)/S(core) < 10^{-4}$

size > 40" & S>90mJy +NO CORE in FIRST

Complementary selection via morphology: high quality LOFAR images allow this

Amorphous, low surface brightness, no core (or very weak) → only a minority have steep low-frequency spectrum!

Brienza et al. 2017

Simulating the populations of active and remnants

Trace spectral evolution in active and remnant phases

Estimate synchrotron flux density → select sources based on realistic flux limit

Powerful sources → Godfrey et al. 2017 <u>http://arxiv.org/abs/1706.05909</u> Low power sources → Brienza et al. 2017

Simulating the populations of active and remnants

Trace spectral evolution in active and remnant phases

Estimate synchrotron flux density → select sources based on realistic flux limit

Powerful sources → Godfrey et al. 2017 <u>http://arxiv.org/abs/1706.05909</u> Low power sources → Brienza et al. 2017

Mock catalogues to directly compare the predictions with the observations (applying the same flux cut) Monte Carlo simulations: model parameters (z, t_on etc.) are sampled from probability distribution... See poster from Marisa Brienza

Only radiative loses do not reproduce observed number of remnants: need adiabatic expansion

Radio lobes are still overpressure (with respect to the ambient medium) when reaching the off phase → expansion continue → fast evolution, dimming of the remnant emission Remnants selected based on their steep, low frequency spectrum → older remnants in the sky (ages > 10⁸ yrs)

Most of the remnants are younger, i.e. in the phase shortly after the switching off (i.e. **a few x 10^7 yr**) low frequency spectrum not yet ultra steep

Only radiative loses do not reproduce observed number of remnants: need adiabatic expansion

Radio lobes are still overpressure (with respect to the ambient medium) when reaching the off phase → expansion continue → fast evolution, dimming of the remnant emission Remnants selected based on their steep, low frequency spectrum → older remnants in the sky (ages > 10⁸ yrs)

Most of the remnants are younger, i.e. in the phase shortly after the switching off (i.e. **a few x 10^7 yr**) low frequency spectrum not yet ultra steep

Evolution of the remnants

(adiabatic losses continue after the source is switched off)
 only the older one have very steep spectrum
 → combining spectral index and morphology we start to understand the evolution of radio sources

Evolution of the remnants

(adiabatic losses continue after the source is switched off)
 only the older one have very steep spectrum
 → combining spectral index and morphology we start to understand the evolution of radio sources

...how about restarted radio sources?

The restarting life of powerful radio AGN

Double-double radio galaxies

Konar et al. 2015

12000

Orru` et al. 2015

→ selected from morphology
→ fast cycle (e.g. 20 Myr ON a few Myr OFF, Konar & Hardcastle 2013, Schoenmakers et al.)

- Outer lobes still fed.

- Inner lobes: mix new/older electrons.
- Detection of a low brightness feature that point from the inner lobes
- towards the outer lobes: remnant emission of an intermediate burst.

The restarting life of a lower power radio AGN

Restarted: does not mean that the old, low-surface brightness lobes are dead!

WSRT 1.4 GHz Shulevski et al. 2012

Young $(9 \times 10^5 \text{ yr})$ radio source Giroletti et al. 2005

WSRT 1.4 GHz Shulevski et al. 2012

Young $(9 \times 10^5 \text{ yr})$ radio source Giroletti et al. 2005

NORTHERN LOBE SI $a^{150}_{1400} = 0.6 - 0.7$ SI $a^{150}_{7000} = 0.6 - 0.7$

Sridhar et al. in prep

Sridhar et al. in prep

expected a possible connection with the presence of gas (HI and molecular)

HI disk of Cen A (Struve et al. 2010)

Low radio frequencies: a powerful way to study AGN life-cycle and AGN physics

We have started to address key questions for radio AGN energetics (magnetic field, particle content, injection index, low freq cutoff, absorption)

Statistics is also building up High spatial resolution and image fidelity are very important

- Number of ultra steep spectrum (USS) does not increase going at lower fluxes, but AGN remnants can be identified e.g. from the morphology
- Numbers remnants explained by simple models: USS represent the older one while the morphology allows to trace intermediate stages after the switching off, not all USS.
- Restarted radio sources: not all diffuse, low surface brightness emission is signature of AGN remnants → cases of low level activity, uncollimated jets etc.
- Connection with the presence of gas for re-triggering the AGN: link to HI surveys of Apertif, ASKAP, MeerKAT

