

International Centre for Radio Astronomy Research



LEAP: Parallel N-Directional Calibration Strategy & Ionospheric Studies

> Maria J. Rioja (ICRAR-UWA, CSIRO) Richard Dodson (ICRAR-UWA) Thomas Franzen (ICRAR-Curtin) George Heald (CSIRO)





THE UNIVERSITY OF Western Australia



# OUTLINE

- Basis and Demonstration of LEAP (Phase 1) DDE ionospheric calibration strategy using MWA obs.
- Developments to include long baselines (LEAP-Phase 2) e.g. LOFAR
- Measurements of Fine Scale Ionospheric Spatial Structure
- Summary and on-going/future work

Frequency Smearing acts as an Efficient Filter...

ICRAR



.. to separate directions within a large FoV

Traditional self-cal (for phase) in a single direction (after DI cal) "Sky model" Free (Embarrasingly) Parallel – Parallel N-directional solving problem

**CSIRO** 

## Ionospheric Phase Distorsions (above MWA array, along calibrator direction)

Antenna Phase solutions from SC vs. MWA antenna positions (X-Y plane)



Differential residual changes of TEC values above MWA along the calibrator direction. Typical values ~ 0.01-0.02 TECU

Antonno Dhaga Calutiona (from CC)

# **IONOSPHERIC PHASE SCREENS**

#### Plots: Antenna Phase solutions (Z-axis) vs. MWA antenna positions (X-Y plane)



# Empirical End-to-End Demonstration using MWA GLEAM obs. (LEAP-Phase 1)

#### Datasets:

7 (2-min) snapshots @ 150 MHz (~ 1 hour), Oct. 2014
7 interleaving (2-min) snapshots @ 80 MHz
Instantaneous BW ~ 30.72 MHz
Very wide FoV (up to 50°)



<u>Characterize performance of LEAP:</u> (As measured in DDE images vs. DI images)

> **Figure of Merit 1:** Source position stability across the 7 snapshots (~1 hour)

#### **Figure of Merit 2:**

Source Peak Flux in mosaic image combining 7 snapshots

Rioja+(in prep)

# FOM1: Source Position stabilization & "facet" size

Calibration for one direction, applied to a region around.
 Comparison of Images from 7 frames <u>@ 150 MHz</u> (~ 1 hour)



# FOM1: Source Position stabilization & "facet" size

Calibration for one direction, applied to a region around.
 Comparison of Images from 7 frames @150 MHz (~1 hour)



# FOM1: Source Position stabilization & "facet" size

 Calibration for one direction, applied to a region around. Comparison of Images from 7 frames @ 150 MHz (~ 1 hour) Comparison of Images from 7 frames @ 80 MHz (~1 hour)



Rioja+(in prep)

### FOM2: Comparison of Peak Fluxes in mosaic images

DDE / DI Peak Flux



## FOM2: Comparison of Peak Fluxes in mosaic images





to calibrate the whole MWA FoV

- ~ 16 calibrators at 150 MHz
- ~ 64 calibrators at 80 MHz



In our test runs on Pleiades, a small version of Pawsey, LEAP DDE calibration Measurements takes ~ <u>200-300 sec</u> for a single direction.

For <u>N-directions</u>, with N-nodes, LEAP DDE calibration takes ~ <u>200-300 sec</u>

This confirms that LEAP is truly embarrasingly parallel.

#### MOSAIC DDE IMAGE using LEAP calibration (facets, wsclean)



#### MOSAIC DDE IMAGE using LEAP calibration (facets, wsclean)



#### DDE IMAGE using LEAP calibration and DDFACET imager





#### DEVELOPMENTS TOWARDS LONGER BASELINES (=larger ionospheric effects)

- **Full Band Frequency Averaging**
- Simulation studies for error analysis @80 MHz:
  - Astrometric errors < 2", amplitude loss < 1%, no change in image noise
- Phase Suitable for MWA size

- Baseline Dependent Filter (smoothing) N
  - (i.e. small FoV whilst keeping spectral signature across BW)
- Phase **Clustering sources** 
  - On going developments at UWA

Suitable for LOFAR / MWA-2 / SKA-Low



## Probing Fine Scale (< 3 km) Ionospheric Spatial Structure

(unique to visibility domain & <u>unconstrained</u> antenna phase gains)

- Understand this source of stochastic errors
- For SKA-Low sensitivities anticipated to be significant (Sensitivity is key detect non-linear distortions)

## Probing Fine Scale (< 3 km) Ionospheric Structure @ 80 MHz



## Probing Fine Scale (< 3 km) Ionospheric Structure @ <u>150MHz</u>

Measured Ionospheric Distortions @ 150 MHz

(MWA)





Deviations from a planar surface: "Ripples" detected similar in scale and strength to those at 80 MHz. No signature of 2<sup>nd</sup> order term and No alignment.

#### **Preliminary**: LOFAR small scale Ionospheric Structure @ <u>150 MHz</u>



X posit



#### SUMMARY and on-going/future steps

End-to-end demonstration of LEAP-Phase 1 feasibility for ionospheric DDE mitigation for MWA obs:

PARALLEL N-directional calibration (embarrasingly parallel), Rapid (~ 300 seconds) Full Sky model not required Astrometrically valid Calibrator density is more than sufficient.

Probes Small scale (< 3km) higher order ionospheric structure (therefore can be corrected for, at lowest frequency and extreme weather).

For SKA\_Low sensitivities this is anticipated to be significant, and such higher-order effects should be addressed.

On going and future work towards SKA-Low: Development of Baseline Dependent Filters (Phase 2) using SKA simulations Demonstration using LOFAR obs. (Phase 1+; Phase 2) Demonstration using MWA-2 obs.

Images with LEAP solutions and DDFacet