The VLA-COSMOS 3GHz survey
Cosmic evolution of radio AGN and star forming galaxies since $z \sim 5$

Vernesa Smolčić (University of Zagreb, Croatia)
Mladen Novak, Jacinta Delhaize, Ivan Delvecchio, Oskari Miettinen (Uni. Zagreb)
Eva Schinnerer (MPIA), Kunal Mooley (Caltech), Chris Carilli (NRAO),
Marco Bondi, Paolo Ciliegi, Gianni Zamorani (INAF)
& (VLA-) COSMOS collaboration
Galaxy Populations

- Bimodality in galaxy populations
 - **Red sequence**: early type/spheroidals, no/little star formation
 - **Blue cloud**: disk galaxies, abundant star formation

- Evolution of galaxies through cosmic time: **Blue ➔ red**
 - Via conversion of gas reservoir into stars
 - Via passive fading of stars & galaxy mergers
 - Aided by AGN feedback

Galaxy Populations

- Bimodality in galaxy populations
 - Red sequence: early type/spheroidals, no/little star formation
 - Blue cloud: disk galaxies, abundant star formation

- Evolution of galaxies through cosmic time:
 Blue \rightarrow red
 - Via conversion of gas reservoir into stars
 - Via passive fading of stars & galaxy mergers
 - Aided by AGN feedback

Questions:
1) Impact of dust onto cosmic star formation history?
2) Impact of AGN onto galaxy evolution?
Cosmic star formation history

- Lilly Madau plot
- Compilation based on different star formation estimators (UV, IR, radio, Hα..)
- Dust correction = major challenge

→ Dust-unbiased star formation rate tracers (at high-z) needed
Cosmic star formation history at high-z

- Lyman-Break Galaxy selection (HUDF +HUDF09, GOODS+ERS +CANDELS, CDF-S)
- UV-based star formation
- Dust extinction estimated based on UV-continuum slope
- Difficulty accounting for dusty starbursts (>100 M_\odot/yr)

Bouwens et al. (2015)
Cosmic star formation history at high-z

- Lyman-Break Galaxy selection (HUDF +HUDF09, GOODS+ERS +CANDELS, CDF-S)
- UV-based star formation
- Dust extinction estimated based on UV-continuum slope
- Difficulty accounting for dusty starbursts (>100 M_☉/yr)

Dust-unbiased star formation rate tracers (at high-z) needed
Radio-mode AGN feedback in cosmological models

- "maintenance" mode
- Once a static hot (X-ray) halo forms around galaxy
- Modest BH growth
- Radio outflows heat surrounding gas

 "truncation of further stellar mass growth"
Radio-mode AGN feedback in cosmological models

- "maintenance" mode
- Once a static hot (X-ray) halo forms around galaxy
- Modest BH growth
- Radio outflows heat surrounding gas
- Truncation of further stellar mass growth

Allows good reproduction of observed galaxy properties

Radio-mode AGN feedback in cosmological models

Croton et al. (2006)
Radio-mode AGN feedback in cosmological models

Croton et al. (2006): Volume averaged kinetic heating rate over the full simulation as a function of redshift

Radio-AGN feedback: this curve can be inferred from observations
Radio-mode AGN feedback in cosmological models

Croton et al. (2006): Volume averaged kinetic heating rate over the full simulation as a function of redshift

Impact of AGN onto galaxy evolution? radio

Radio-AGN feedback: this curve can be inferred from observations
VLA-COSMOS 3GHz Large Project
VLA-COSMOS 3 GHz Large Project + COSMOS

- **VLA-COSMOS 3GHz Large Project**
 - Smolčić et al. (2017a)
 - 384 hours (A+C configurations, 2012/13/14)
 - 3 GHz (2 GHz bandwidth)
 - 0.75” resolution
 - rms ~2.3 µJy/beam over 2°
 - 10,830 sources

- **COSMOS Project**
 - Scoville et al. (2007)
 - 2° equatorial field
 - X-ray to radio imaging (>30 bands)
 - Galaxy photo-z accuracy
 (Ilbert et al. 2009; Laigle et al., in prep.)
 - AGN photo-z accuracy
 (Salvato et al. 2009; Marchesi et al., subm.)
 - >100,000 spectra (VLT, Magellan, Keck)
Final mosaic
Final mosaic
Final mosaic
The star forming & AGN galaxy samples

VLA-COSMOS 3GHz LP (>11.5 µJy)
(Smolčić et al. 2017a)

+ COSMOS MIR sources
(Laigle et al. 2016)

~35% spec-z, else photo-z with
$\sigma_{\Delta z/(1+z)}<0.021$
The star forming & AGN galaxy samples

VLA-COSMOS 3GHz LP (\(>11.5 \, \mu\text{Jy}\))
(Smolčić et al. 2017a)

+ COSMOS MIR sources
(Laigle et al. 2016)

\[\text{Radio-excess} = \text{radio AGN} \quad (1814)\]
\[\text{No radio-excess} = \text{radio SFG} \quad (5915)\]

~35% spec-z, else photo-z with \(\sigma_{\Delta z/(1+z)}<0.021\)

Smolčić et al. (2017b), Delvecchio et al. (2017)
The star forming & AGN galaxy samples

VLA-COSMOS 3GHz LP (>11.5 µJy) (Smolčić et al. 2017a)

+ COSMOS MIR sources (Laigle et al. 2016)

- Radio-excess = radio AGN (1814)
- No radio-excess = radio SFG (5915)

- Radio luminosity functions at rest-frame 1.4 GHz out to z~5 (V_{max})
- Local LF (Condon et al. 2002; Best et al. 2005; Mauch & Sadler 2007); fixed shape, fit to data assuming pure luminosity or luminosity + density ($\Phi + L$) evolution
- 1.4 GHz luminosity used as proxy for SFR & kinetic jet luminosity (Delhaize et al. 2017; Willott et al. 1999)

~35% spec-z, else photo-z with $\sigma_{\Delta z(1+z)}<0.021$

Smolčić et al. (2017b), Delvecchio et al. (2017)
Radio-based cosmic star formation history
Radio luminosity functions at rest-frame 1.4 GHz (V_{max})

Local LF (fit to Condon et al. 2002, Best et al 2005, Mauch & Sadler 2007 data); fixed shape, fit to data assuming pure luminosity or luminosity + density ($\Phi+L$) evolution

Compared to IR-based derivations: Gruppioni et al. (2013), Magnelli et al. (2013)
- $L_{\text{IR}} \rightarrow L_{1.4\text{GHz}}$ using $q(z)$

Compared to UV-based derivations: Bouwens et al. (2015)
- $L_{\text{UV}} \rightarrow \text{SFR} \rightarrow L_{1.4\text{GHz}}$ using $q(z)$

$$\log \frac{L_{1.4\text{GHz}}}{\text{W Hz}^{-1}} = 16.556 - 0.4(M_{1600\alpha} - A_{\text{UV}}) - q_{\text{IR}}(z)$$

$$A_{\text{UV}} = 4.43 - 1.99\beta$$

(IRX–β relation, function of UV mag; Bouwens et al. 2014; Meuerer et al. 1999)

Novak et al. (2017)
In fair agreement with dust-corrected UV-based results at $z>3$ (Bowens et al. 2015) slightly higher than Maudau & Dickinson (2014) compilation (but within error)
Radio-based cosmic star formation history

Combined dust-corrected UV and radio data

→ possible systematic 15-20% underestimation of highly obscured SFRD estimated from the rest-frame UV observations (Bouwens et al. 2015)
Radio-mode AGN feedback
Radio luminosity functions at rest-frame 1.4 GHz (V_{max})

- Local LF (Mauch & Sadler 2007): fixed shape, fit to data assuming pure luminosity or luminosity + density ($\Phi+L$) evolution

- Fair agreement with previous results

Smolčić et al. (2017c)
Radio-mode feedback

- Agreement with SAGE model (Croton et al. 2016)
- Many assumptions & simplifications in both observational and semi-analytic models still to be tested

Smolčić et al. (2017c)
Summary

VLA-COSMOS 3 GHz Large Project
- Simultaneously the largest and deepest radio continuum survey at high angular resolution
- 10,830 radio sources (S/N>5, $\text{rms}=2.3 \text{ uJy/beam}$, resolution 0.75”, 2 square degree area)
- Combined with COSMOS multi-λ dataset with highly accurate photometric (+spec.) redshifts ($z<6$)
- Data products available through IPAC/IRSA: http://irsa.ipac.caltech.edu/Missions/cosmos.html

Dust unbiased cosmic star formation history since $z\sim 5$
- In fair agreement with previous results based on IR, and UV data
- Tight constraint on galaxies with SFR>$100 \, M_{\odot}/\text{year}$ → possible 15-20% underestimation of highly obscured SFR estimated from the rest-frame UV observations at $z=4$ and 5

Radio-mode AGN feedback since $z\sim 5$
- Key ingredient of cosmological models to reproduce number of massive galaxies
- In fair agreement with SAGE model
- Many assumptions and simplifications in both observational and semi-analytic models still to be tested