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gj{rélvaf;rg%% Talk Outline

* What are Coronal Mass Ejections and Type Il solar radio bursts?
* Why is it important to study solar processes?

* How to obtain information from Type Il burst observations

- Using the dynamic spectrum morphology to extract the
local coronal magnetic field

- Imaging of the emission source

e QOverview of obtained results




QD ey Coronal Mass Ejections (CMESs)

Sporadic violent solar eruptions of massive plasma and magnetic structures
into the interplanetary space.

The rapid expulsion of particles by the CME forms abrupt discontinuities in
density, pressure, and temperature producing a shock wave.
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[ e Type |l radio bursts

* Electrons excited by shock waves manifest as Type Il radio bursts and radiate
through the plasma emission mechanism

* Emission at fundamental (f) and second-harmonic (2f) of local plasma
frequency can be observed (Mclean & Labrum, 1985)

e Each of the Fundamental (F) and Harmonic (H) bands can experience splitting
into two thinner lanes, a phenomenon known as “band-splitting”
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F Glasgow Motivation

* CMEs can reach Earth and cause geomagnetic storms that can be very
damaging.

* Type ll bursts trace outward propagating shock waves and can thus be used as
a diagnostic tool for shock wave parameters and local coronal conditions at
each point in space.

* Advantage of Radio Observations: Ability to extract information from solar
eruptions at distances close to the solar surface that cannot be probed in-situ
or imaged at higher wavelengths.

* Observe the detailed structure of Type Il bursts at previously largely
unexplored frequencies with a telescope of unprecedented capabilities.




QD ey 25t June 2015 observations
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QD ey 25t June 2015 observations

* URAN-2
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g;gggg;gz Frequency Drift Rate

* Linear fit considering the highest intensities

* Since the band is split, a fit was applied on each of the upper and lower
band parts

* Frequency drift rate given by gradient of line

* Decrease in frequency with time corresponds to decrease in densities
encountered as shock propagates away from the Sun
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of Glasgow

 Assume fundamental emission,
fpe = 8.98 X 103\/71_9 [Hz]

where: n, isin cm™3

 Take the 1xNewkirk coronal density
model (1961):

Ne = N X ng X 10%32/R [ cm™3]

where:  ny=4.2x 101 cm™3
N =1 for 1xNewkirk
R = distance from solar centre [Rg]

N

e Can estimate the source’s distance
from the solar centre (R)

Electron density [cm

e R was estimated to be between
1.56-1.79 R;

m University C

oronal Density Model

Plasma frequency, f,, [MHz]
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* Following calculations consider Upper Band frequency drift rate only

* The (radial) shock speed is calculated through:

df e 2R®ne dne _1
|4 = —B= % x( ) kms~?
shock dt fre dR [kms™" ]
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where: n, = electron density [cm ™3]
1200 f = frequency [MHz]
i R = distance from solar centre [km]
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g}réil\;egg(i)% Band-Splitting

* A band-splitting interpretation proposed by Smerd et al. (1974; 1975)
attributes the splitting to simultaneous emission from the upstream
and downstream parts of a shock front

* Relates band-splitting to the Rankine-Hugoniot jump conditions across
the shock

e Relative bandwidth (BWD) related to density jump across the shock
(Priest, 2014):
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U = upper band (higher frequency) Start Time (25-Jun-15 10:45:47)
L = lower band (lower frequency)

* Estimated (average) density jump, X = 1.40
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7 Oy Alfvén Speed

e Assume: (i) plasma beta, § = 0.5
(ii) adiabatic index, y =5/3
(iii) angle between shock normal and upstream B-field, 0 = 90°.

So, the Alfvén Mach Number, M, (Vrsnak et al., 2002):

(XX +5+5B)
MA_]( 2(4 — X) )

= 1.55

And the Alfvén Speed, V,:

[kms™! ]
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Eféﬁ?gsé% Magnetic Field
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Since V4

Taking: n; = N and m; = Mypton

The magnetic field is estimated using:

Best = 5.1 X 107> X V4 X fye [Gauss]

where:  Vjisin kms™!
fpeisin MHz

Compare to the magnetic field model e.g., Dulk and Mclean (1978):

Broger = 0.5(R — 1)~ [Gauss]

where: R =distance in Rg
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* Imaging a specific moment in time and frequency enables the examination of
the motion of the emission source during the observation
* Selected points in time and frequency for:
Type Il upper and lower bands (shown in black crosses)
Type Il burst at 10:47:43 UT (shown in red crosses)

* For the Type II: an UPPER band point and a LOWER band point is selected for
each moment in time

* For the Type Ill: selected points across frequencies for a single moment in time
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Type ll:

* (left) Centroid locations plotted along with 90% maximum intensity contours
for the Type Il burst. The black diamonds represent individual beams and
collectively the Field of View of LOFAR during the observation.

* (right) A magnification into the Type Il sources and associated centroids

* Blue colour scheme used for upper band sources and red for the lower band.
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Type lll:

* (left) Centroid locations plotted along with 90% maximum intensity contours
for the Type Ill burst. The black diamonds represent individual beams and
collectively the Field of View of LOFAR during the observation.

* (right) Error bars assigned to Gaussian estimations of the Type lll centroids
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o Glasporn Source Motion

* Combination of:
- SDO/AIA image showing solar surface near Type Il occurrence time
- SOHO/LASCO (€C2) running difference image near Type Il start time
- Centroid locations obtained using LOFAR data
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o Glasporn Source Motion

* Combination of:
- SDO/AIA image showing solar surface near Type Il occurrence time
- SOHO/LASCO (€C2) running difference image near Type Il start time
- Centroid locations obtained using LOFAR data
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Overview of Analysis
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1. Relation of the morphological characteristics of dynamic spectra to
parameters describing the local coronal environment and the shock wave
properties, e.g.:

- Shock speed
- Alfvén speed

- Magnetic Field

2. Study of the Emission Source Motion
- Compared position of Type Il upper and lower band sources
- Compared position of Type Il sources and Type llI
- lllustrated direction of propagation with respect to solar surface
- lllustrated emission source locations with respect to solar eruptions

3. Objective: Compare observational results against band-splitting models
(see e.g. Zimovets et al., 2012)
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THANK YOU

ANY QUESTIONS?
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