

The Sun and the Heliosphere at Low Radio Frequencies

Divya Oberoi National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune, India

div@ncra.tifr.res.in

Collaborators

- NCRA-TIFR
 - Rohit Sharma, Atul Mohan, Akshay Suresh (IISER-Pune)
- MIT Haystack Observatory
 - Colin Lonsdale, Leonid Benkevitch, Meagan Crowley (UMass)
- University of Sydney
 - Iver Cairns, Patrick McCauley
- Institute of Astronomy, Bulgarian Academy of Sciences
 - Kamen Kozarev
- Curtin University of Technology
 - John Morgan, Rajan Chhetri
- New Jersey Institute of Technology
 - Bin Chen
- MWA Collaboration

Characteristic frequencies and emission mechanisms

Refraction in the corona

Total Solar Eclipse 2006

© 2006 Miloslav Druckmüller, Peter Aniol, ESA/NASA

Sample MWA Dynamic Spectrum

(12 log-spaced groups of 2.56 MHz spanning 80 – 300 MHz)

Needs of solar radio imaging

- More of everything
 - Time resolution (10s of ms)
 - Spectral resolution (10s of kHz)
 - Angular resolution (< arcmin)
 - Imaging dynamic range (> 10⁵)
 - Full Stokes imaging

Plan

- The quiet Sun studies
- Event based solar studies
 - Type II bursts
 - Type III bursts
- High dynamic range solar imaging
- Heliospheric science
- Outlook

Characterizing weak features in solar dynamic spectra

 Wavelet based feature detection and characterization

Suresh, A. et al., 2017, ApJ

Interesting for nanoflare based coronal heating models

 $1 \text{ SFU} = 10^4 \text{ Jy}$

Suresh, A. et al., 2017, ApJ

Evidence for even weaker non-thermal

emissions

Slowly varying component

Gaussian Mixture Decomposition

• The 1st Gaussian – slowly varying component

1-w₁ = Impulsive (hence non-thermal) component

Sharma, R. et al., 2017, In preparation

Impulsive Emission: Fraction & Strength

$$S_{lm}(SFU) = rac{1}{N}\sum_{i=1}^{N}(x_i - \mu_1)y_i$$

 x_i and y_i are the coordinates of the histogram for i^{th} bin and N is the number of histogram bins.

Frequency (MHz)	Continuum Flux (SFU)	Impulsive Flux (SFU)	Impulsive Fracti	PSF Area (arcmin ²)	T₅ (K)
109.0	2.74 ± 0.34	5.43 ± 0.07	0.25 ± 0.01	47.3	3.7e+07
121.0	3.68 ± 1.31	4.62 ± 0.13	0.24 ± 0.0	38.4	3.2e+07
134.0	4.84 ± 1.46	3.33 ± 0.13	0.26 ± 0.02	31.3	2.3e+07
147.0	6.24 ± 0.74	5.77 ± 0.13	0.42 ± 0.07	26.0	3.9e+07
162.0	8.14 ± 1.07	5.79 ± 0.03	0.17 ± 0.0	21.4	4.0e+07
180.0	10.65 ± 1.62	10.44 ± 0.71	0.31 ± 0.03	17.3	7.3e+07
198.0	13.54 ± 2.34	13.35 ± 0.89	0.33 ± 0.02	14.3	9.2e+07
218.0	17.75 ± 3.02	12.96 ± 0.43	0.45 ± 0.05	11.8	8.9e+07
241.0	23.35 ± 3.38	16.24 ± 0.6	0.28 ± 0.04	9.7	1.1e+08

Sharma, R. et al., 2017, In preparation

More evidence for nanoflare heating

Sharma, R. et al., 2017, In preparation

Evidence for nanoflare heating: Image plane

Solar radio bursts : Classification

Ganse et al., 2012

CME and Type II: Time evolution of sources

See poster by Kozarev et al.

Kozarev, K. et al., 2017, In preparation

Type II: Tracking emission in 4D

Study of a weak type III

- 02 Nov, 2014, observed in F (111-126 MHz) and H mode
- 10⁹-10¹² K (10,000 type IIIs from Nançay, Saint Hillaire, 2013)
- 10⁸ K

Amazing dynamics!

3D structure of B field

Amplitude oscillations

0.9

0.8

- Time variability
 - Could be loop MHD modes
 - Episodic jet? -
 - Need more analysis

Spatially resolved T_B dynamic spectra $T_B(\theta, \phi, v, t)$

High dynamic range imaging

936_c113-114_f08_t0329430-0329435_1800_split16_nit

Extremely bright compact source during a type II burst

 $v_0 = 144.9 \text{ MHz}$ $\Delta v = 40 \text{ kHz}$ $\Delta t = 0.5 \text{ s}$

Quiet Sun ~5 10⁴ Jy Burst source ~10⁶ Jy

Lonsdale et al., 2017

CME Physics

- Direct radio detection of CME plasma
 - Type II emission 10¹⁰-10¹² K
 - Persistent non-thermal solar emission 10⁷-10⁸ K
 - CME synchrotron emission 10⁴ K
 - Few published instances (e.g., Bastian et al., 2001)
- Strength of radio measurements
 - Direct measurements of CME magnetic field
 - Fraction of relativistic and thermal plasma

Space Weather

- Faraday rotation of linearly polarized background (Galactic) radiation due to the passage of the magnetized CME plasma across the LoS
 - Handle on CME B field Holy grail of Space Weather physics
- Use of Interplanetary Scintillation (IPS) for constraining size, speed and turbulence properties of CMEs and solar wind
 - Rajan Chhetri Thu morning; AGN Physics
 - Richard Fallows Thu late afternoon; Ionosphere

Outlook

- We are only picking up the shiniest pebbles on the beach yet.
- Build the tools and techniques to analyse larger volumes of data in great detail.
- Build tools to condense the information from the above analysis into humanly intelligible forms!
- New generation instruments have really opened up new and pristine phase space for studying both the quiet and the active Sun.
 - Expect surprises and fascinating new science