Imaging at low frequencies
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(a) Reconstructed model image (b) Residual image (0=8.6 units/PSF)

Automatic scale-dependent masking applied on the UGC12591 test-set.
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Challenges in low-frequency
Imaging
Large FOV

- Large w-values
- Harder to deconvolve

Large fractional bandwidth
- Requires multi-frequency deconvolution
_arge data volumes

Robustness to calibration errors
Connection to direction-dependent cal.
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ABSTRACT

We describe a new multi-scale deconvolution algorithm that can also be used in multi-
frequency mode. The algorithm only affects the minor clean loop. In single-frequency mode,
the minor loop of our improved multi-scale algorithm is over an order of magnitude faster than
the CASA multi-scale algorithm, and produces results of similar quality. For multi-frequency
deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor
loop of our algorithm is 2-3 orders of magnitude faster than CASA MSMFS. We extend the
multi-scale mode with automated scale-dependent masking, which allows structures to be
cleaned below the noise. We describe a new scale-bias function for use in multi-scale clean-
ing. We test a second deconvolution method that is a variant of the MORESANE deconvolution
technique, and uses a convex optimisation technique with isotropic undecimated wavelets as
dictionary. On simple, well calibrated data the convex optimisation algorithm produces vi-
sually more representative models. On complex or imperfect data, the convex optimisation
algorithm has stability issues.




WSClean: w-stacking
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A few examples of WSClean results...

3
Temperature [kK]

"The LWAL Low Frequency Sky Survey",
Jayce Dowell et al. (2017)

Gravitational
Lense

(VLBI data

by J. P. McKean

-

MWA EoRO, Offringa et al. (2016). Deepest MWA image.




Multi-frequency deconvolution

« Common approach in MF deconvolution is imaging /
predicting “frequency derivative” Images (“nterms>1", the Sault &

Wieringa (1994) method).

.......

That results In:

Flux density

Frequency

Instead, WSClean splits the
bandwidth and creates
separate images for each part:

(Similar strategy is used by B. Cotton’s OBIT)
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Multi-frequency deconvolution

e Of course, these
contain the same
Information

(they can be
converted from one
to the other)

» But the second option
IS easier/more
Intuitive to clean...
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Multi-frequency deconvolution

WSClean’s Multi-frequency clean algorithm: (1 maj iter)

Make residual images at different frequencies

Start cleaning:

- Find a peak in the integrated image

- Measure the flux at this position in the subband
Images

— Subtracted the correct PSF from each subband
Image.

...Until major iteration threshold is reached

(Optionally) convert to Taylor-term images and predict




Multi-frequency deconvolution

WSClean’s Multi-frequency clean algorithm: (1 maj iter)

Make residual images at different frequencies

* Start cleani This is called
- Find ¢ “joined-channel cleaning” )e
- Meas InWsClean the subband

IM& (Offringa and Smirnov. 2017)

p SUbtrMULbu LIT1Te UWJUITOVUVUL T W IMTJvIII o Ch SUbband
Image.

...Until major iteration threshold is reached

(Optionally) convert to Taylor-term images and predict




Multi-frequency deconvolution

WSClean’s Multi-frequency clean algorithm: (1 maj iter)

Make residual images at different frequencies

o Start cleani This is called
- Find ¢ “Joined-channel cleaning” )e
- Meas in WSClean the subband
M3 (Offringa and Smirnov. 2017)

~and

This Is not the same as “MFS”
U or “MSMFS” imaging.

* (Op dict




Multi-scale kernel

Tapered quadratic a=64 —— Gaussian matching a=64
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Figure 1. Shape functions for scales a = 64 pixels and o = 128 pixels.




Fast multi-scale deconvolution

* |n Cornwell’s (2008) multi-scale method,
the appropriate scale is determined
every minor iteration

 Cornwell’s algorithm can be sped up by
keeping the scale fixed “for a while”

* This Is the algorithm implemented In
WSClean




(d) Multi-frequency single-scale clean (residual RMS=460 pJy/PSF)

(e) Multi-frequency multi-scale clean (residual RMS=63 pJy/PSF)

0.1 1 10 2 -15 -1 05 0 05 1

15 2 2 15 -1 05 0 05 1

——» Flux density (m]y/px) — Flux density (m]y/psf) —» Spectral index

« Comparison of WSClean MF single scale and multi-scale cleaning
« Simulated bandwidth of 30 MHz at 150 MHz.

 MWA layout, 2 min snapshot _ _
Offringa and Smirnov (2017)
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Deconvolution performance
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Figure 12. Example of the progression over time when using the new multif

Inversion Prediction |
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scale clean algorithm on a 2048 x 2048 image.

Offringa and Smirnov (2017)
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(a) Original (b) Convolved image (o=640,000 units/PSF)
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(c) CASA model (d) cASA residual (=37 units/PSF)
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(a) Original (b) Convolved image (o=640,000 units/PSF)
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(e) WSCLEAN model (f) WSCLEAN residual (o=15 units/PSF)
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(e) WSCLEAN model (f) WSCLEAN residual (o=15 units/PSF)




Compressed sensing results

* “Moresane” compressed

sensing deconvolution
(A. Dabbech et al. 2014)

* Multi-frequency
Implementation Iin
WSClean

* Produces sometimes
very good-looking
models

(d) WSCLEAN + MORESANE

Model(!) image made with WSClean + Moresane Offringa and Smirnov (2017)




An iIssue with
JUWT / Moresane...

(a) WSCLEAN multi-frequency, multi-scale with [3=0.6 (b) WSCLEAN multi-frequency, iuwt (rms=2,7 mJy)
(rms=1.4 mly)

Offringa and Smirnov (2017)




Automatic scale-dependent masking

 Normal cleaning requires manual threshold
tweaking, manual masking, etc...

 Masking Iis hard when structures are diffuse

 Move towards non-interactive, fully automatic
cleaning

» “Automatic scale-dependent masking” :

- For each scale, a mask is accumulated

- Clean normal to 3-50, continue to 0.50 with a
scale-dependent mask. In one run.




Automatic masking

e Threshold is relative to RMS estimate

« RMS estimate can be “local” when RMS is
expected to change over the image
(avoids picking up calibration errors)

* Avoids Iinteraction & somewhat-arbitrary
selection of features, etc.

» Allows deeper & more stable cleaning of
complex structures. Limits clean bias.

e Can be done in multi-frequency mode




to-masking on point sources
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Auto-masking on point sources
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Declination (I2000)
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Declination {I2000)

Automasking VLBI example

A brigg=0/waclean—image fits

-/ brigpad/waclean—residusl fits
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(a) Multi-scale model image without masking {(b) Multi-scale model image with automatic masking

ale residual without masking (rms=50 mJy/B) (d) Multi-scale  residual with automatic  masking
(rms=38 mlv/B)
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Figure 9. Automatic scale-dependent masking applied on the UGC12591 test-set.
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30k x 30k image, gridded with IDG using GPUs
By Bas van der Tol et al.

20 min for gridding/predicting
Can include beam correction without added cost
Connected to WSClean — allows all cleaning methods
IDG is publicly available (library that can be linked to WSClean)

J2000 Right Ascension



Reasons for adding more
constraints in DD calibration

LBA calibration

- See talk by Francesco later today
- No current pipeline can produce (good) DD solutions
HBA diffuse imaging

— Current pipelines calibrate diffuse structures out
EoR imaging
- Constraints important to avoid reducing EoR signals

“Normal” deep HBA imaging

- Interpolated TEC screens to get solutions with more
accurate solutions




Solve directions lonospheric smoothness
simultaneously constraint (like lonpeel /SPAM)

(like Sagecal)
AN

A? constraint
(like Factor) Self-calibration loop

\ (like Facior)

Fast

Temporal constraints (like Sagecal)

Other constraints?
(e.g. redundancy,
spectral smoothness)

Constraint DD solver pipeline
Implemented in DPPP (T. J. Dijkema)
See poster




Initial
model

DI calibra-
ted data

Implemented in
DPPP (T. J. Dijkema)

TEC | _ __|1Constraint |._—
screen DDE Solve

Deconvolution: a-correction
multi-scale
multi-freq BECIEE IDG
auto-masked

[\
N\

Collaboration with Dijkema, Offringa, Gasperin, Mevius, van Weeren, et al.






- A
Local RMS cleaning




Modeling with WSClean

WSClean (since 2.4) can directly output a beam
corrected calibration model

Consists of point sources, Gaussians and spectral
iInformation

Directly readable by DPPP (T.J. Dijkema)

- Allows DD calibration with WSClean + DPPP
Local RMS method reduces false components




Summary

 WSClean provides fast gridding & deconvolution

- WSClean multi-scale with joined channels
>2 order of magnitude faster than CASA MSMFS mode.

* Fully automated cleaning
- Thresholds given in sigma’s, not in Jy.

e Auto-masking improves accuracy / clean bias

e Can directly output point-source & Gaussian model including
frequency information

* Next upgrade: WSClean + IDG + A-term correction

Download WSClean incl. manual from: http://wsclean.sourceforge.net/
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