A spectacular view of the Toothbrush: filaments and inhomogeneous magnetic fields

Kamlesh Rajpurohit Thüringer Landessternwarte Tautenburg

Matthias Hoeft and Reinout J. van Weeren

The Broad Impact of Low Frequency Observing Bologna, June 21, 2017

Large scale diffuse radio emission in 1RX J0603.3+4214

• Radio observations by van Weeren +2012 :

- cluster host ~ 2 Mpc relic
- additional fainter relics and halo
- z = 0.225

• Toothbrush relic:

steep spectrum, α = -1.15 ± 0.01
 Mach number (M) ~ 3.78
 clear spectral index gradient tow

- clear spectral index gradient towards cluster centre
- strongly polarized (up to 60%) at
 4.9 GHz

LOFAR image (150 MHz)

Large scale diffuse radio emission in 1RX J0603.3+4214

• Radio observations by van Weeren +2012 :

- cluster host ~ 2 Mpc relic
- additional fainter relics and halo
- z = 0.225

• Toothbrush relic:

steep spectrum, $\alpha = -1.15 \pm 0.01$

Mach number (M) ~ 3.78

- clear spectral index gradient towards cluster centre
- strongly polarized (up to 60%) at
 4.9 GHz

Low frequency spectral index map (150 - 610 MHz)

E-vectors distribution at 4.9 GHz

X-ray analysis: weak shock at northern edge

X-ray analysis: weak shock at northern edge

JVLA combined A+B+C+D array images

7" resolution, rms=9 μ Jy, frequency=1.5 GHz

3" resolution, rms=6 μ Jy, frequency=1.5 GHz

Detection of several head-tail radio galaxies

Comparison: Brush is extended at 150 MHz

7" resolution, rms=93 μ Jy, frequency=150 MHz

Ridge branches into two parts

Ridge branches into two parts

Spectral index at northern edge - 0.70 < α < -0.75

Spectrum steepens within the ridge

Spectral index across the double strand varies

Detailed investigation of the ridge

Ridge position shifts with frequency

Surface brightness distribution:

Surface brightness distribution:

Best fit: $\mathbf{B_0} \leq 5\mu\mathbf{G}, \sigma \geq 0.7$ and Mach number = 3.75

Best fit: $\mathbf{B_0} \leq 5\mu \mathbf{G}, \sigma \geq 0.7$ and Mach number = 3.75

model ruled out field strength above 5 μG

Halo: remarkable uniform spectral index

Halo southern most part: a fainter relic !

Relic and halo conhection ?

Right ascension

Right ascension

30

20

40

50

0.07

0.06

6:03:00

10

JVLA contours

van Weeren et al. 2016 — gradual flattening is due to the re-acceleration by turbulence of "aged" electrons downstream of the relic

Right ascension

JVLA contours

В

50

40

30

Right ascension

20

0.07

0.06

6:03:00

10

Degree of polarization: brush depolarized at 1.5 GHz

Degree of polarization: brush depolarized at 1.5 GHz

Degree of polarization: brush depolarized at 1.5 GHz

Summary

- Toothbrush is made up of filamentary structures
- Ridge peak shift with frequency, indicating intrinsic shape of the emission is frequency dependent
- Lognormal B distribution allows to approximate profiles significantly better
- Best fit: Mach ~ 3.75, $B_0 < 5 \mu G$, $\sigma > 0.7$
- Southern part of the halo is steeper and flattens again at the edge
- Brush depolarized at 1.5 GHz

