The LOFAR Two-metre Sky Survey (LoTSS) Timothy Shimwell Leiden University

The LOFAR Two-metre Sky Survey (LoTSS)

PI: Röttgering.

Core team: Best, Brüggen, Brunetti, Chyży, Conway, Haverkorn, Heald, Jackson, Jarvis, Lehnert, McKean, Miley, Morganti, Scaife, Tasse, White,

- Description and preliminary data release in Shimwell et al. A&A 2017
- \sim \approx 5" resolution
- $\approx 100 \mu Jy/beam$ sensitivity
- 48 MHz bandwidth
- 3170 8hr pointings to cover the northern sky
- Over 13% complete

Preparing for the first LoTSS full quality data release

A data release of 6" resolution images with a sensitivity of $\approx 100 \mu Jy/beam$ made from 63 direction dependent calibrated datasets.

This covers \approx 400 square degrees in the region of the HETDEX Spring Field and the catalogue will contain over 300,000 sources.

Completely automated data processing at SURFsara

Completing LoTSS requires 50 PB of data and processing on the archive facilities mitigates data retrieval issues.

GRID implementation - Mechev (poster), Oonk, Danezi, Shimwell, Schrijvers

Prefactor - Horneffer, van Weeren, Williams, Shimwell, Frohlich, many others

Fully automated direction dependent calibration and imaging pipeline

DDF-pipeline uses DDFacet and KillMS for imaging and calibration. The pipeline runtime is \sim 3-4 days per pointing. Nearly 100 HBA pointings have been processed to produce 6arcsec and $100 \mu Jy/beam$ noise images. DDF-pipeline requires no user interaction and is operational on SURFsara.

DDF-pipeline - Hardcastle, Shimwell, Tasse, Williams

June 2017.

Image quality

Facet based astrometric corrections based on Pan-STARRS are applied in DDFacet

Standard deviation of offsets from FIRST is $1.3 \mbox{arcsec}.$

Image quality

Good flux agreement with TGSS.

Source classification

Multi-wavelength team - Best, Hardcastle, Williams, Sabater, Duncan and many more

LoTSS – 750 sources per square degree 36.75' x 20.55'

June 2017.

Cluster science with LoTSS

 Even in very well studied clusters LoTSS depth observations are revealing new emission and allowing precise characterisation.

van Weeren+ 2016 and in prep

Hoang+ submitted **Facet calibration** – van Weeren, Williams, Rafferty, Hardcastle, Shimwell and many more

June 2017.

Cluster science with LoTSS

 Interesting samples, such as clusters with prominent X-ray shocks, are progressing well.

Hoang+ in prep. Abell 520 and 2146 are also observed as part of the sample.

June 2017.

Cluster science with LoTSS

 And many other ongoing studies.

See posters by

- Drabent
- Wilber
- Shulevski
- Botteon
- Mandal
- Dumba

Hoang+ in prep

Coming soon

LoTSS first full quality data release HETDEX Spring Field (400 square degrees) full direction dependent calibration 100μ Jy/beam sensitivity 6 arcsec synthesised beam over 300,000 catalogued sources source classification