

Wirtinger calibration and spectral deconvolution for the lowfrequency radio surveys

Cyril Tasse

Observatoire de Paris – Rhodes University

Algorithms : Oleg Smirnov, Etienne Bonnassieux, Marcellin Atemkeng, Landman Bester, Benna Hugo, Sphesihle Makhathini, Simon Perkins, ++

LOFAR science : Martin Hardcastle, Tim Shimwell, Wendy Williams, Alex Mechev, ++

Outline

- 3rd generation « Wirtinger » Calibration
- DDFacet an imager for 3GC
- Some fancy wide-band, wide field decovolution algorithms
- Some images for LOFAR surveys KSP

The best image you can ever get in selfcal

Ionospheric disturbance + Faraday rotation

Station lobes

«Third» generation calibration and imaging

.... A pretty difficult problem to invert (a post-processing adaptative optics)

(1)- Wirtinger optimisation for Direction Dependent Calibration

Tasse 2014 Smirnov & Tasse 2015

(2)- Imaging and deconvolution taking into account

- Direction Dependent effects (Beam, ionosphere, etc)
- Sources' spectral properties
- Variable PSF
- ... and many more cool stuff

DDFacet projet : a France- South Africa collaboration

Tier-1 LOFAR Survey : to be observed 48 Pbytes of Raw data → ~39Eiffel towel size dvd stacks

Tier-1 LOFAR Survey : observed so far ~5 Pbytes of raw data → ~4 Eiffel towel size dvd stacks

RIME Calibration

RIME Calibration

Wirtinger Optimisation: Jacobian & Hessian (Read Tasse 2014,

Wirtinger derivative definition « reorganises » the process and data : the Jacobian and Hessian become sparse and compact

Smirnov & Tasse 2015)

$$\frac{\partial \overline{z}}{\partial z} = 0$$
 and $\frac{\partial z}{\partial \overline{z}} = 0$

Wirtinger Optimisation: Jacobian & Hessian (Read Tasse 2014, Smirnov & Tasse 2015)

Wirtinger derivative definition « reorganises » the process and data : the Jacobian and Hessian become sparse and compact

The fantastic property of Wirtinger Jacobian and Hessian for the RIME:

We can cut it in two !!!

- The result just needs to be devided by 2 !
- Very non trivial to prove, but I did it just a few weeks ago
 - **Full** Wirtinger-Jacobian LM with lambda=0 is *the same as*
 - Half Wirtinger-Jacobian LM with lambda=1

Wirtinger Hessian

DDF-pipeline (Tim Shimwell, Martin Hardcastle)

DDF/kMS contributors

... A facet based imager

(1) Produces a single tengential plane ! (no « noise jumps » thanks to the kalman filter, and facetting mode) – largely insprired from Kogan&Greisen 2009

(2) Does full polarisation DDE correction

(3) Baseline Dependent Averaging 90 % of the data can be compressed (collaboration with
O.Smirnov and M. Atemkeng)

(4) Does tesselated images

... A facet based imager

(1) Produces a single tengential plane ! (no « noise jumps » thanks to the kalman filter, and facetting mode) – largely insprired from Kogan&Greisen 2009

(2) Does full polarisation DDE correction

 (3) Baseline Dependent Averaging 90 % of the data can be compressed (collaboration with
 O.Smirnov and M. Atemkeng)

(4) Does tesselated images

(5) Does take time-freq-baselinedirection dependent beam into account

... A facet based imager

(1) Produces a single tengential plane ! (no « noise jumps » thanks to the kalman filter, and facetting mode) – largely insprired from Kogan&Greisen 2009

(2) Does full polarisation DDE correction

 (3) Baseline Dependent Averaging 90 % of the data can be compressed (collaboration with
 O.Smirnov and M. Atemkeng)

(4) Does tesselated images

(5) Does take time-freq-baselinedirection dependent beam into account

(6) Continuity between facets

... A facet based imager

(1) Produces a single tengential plane ! (no « noise jumps » thanks to the kalman filter, and facetting mode) – largely insprired from Kogan&Greisen 2009

(2) Does full polarisation DDE correction

 (3) Baseline Dependent Averaging 90 % of the data can be compressed (collaboration with
 O.Smirnov and M. Atemkeng)

(4) Does tesselated images

(5) Does take time-freq-baselinedirection dependent beam into account

(6) Continuity between facets

(7) Takes variable PSF into account (DDE, Smearing/Decorrelation)

... A facet based imager

(1) Produces a single tengential plane ! (no « noise jumps » thanks to the kalman filter, and facetting mode) – largely insprired from Kogan&Greisen 2009

(2) Does full polarisation DDE correction

 (3) Baseline Dependent Averaging 90 % of the data can be compressed (collaboration with
 O.Smirnov and M. Atemkeng)

(4) Does tesselated images

(5) Does take time-freq-baselinedirection dependent beam into account

(6) Continuity between facets

(7) Takes variable PSF into account (DDE, Smearing/Decorrelation)

... A facet based imager

(1) Produces a single tengential plane ! (no « noise jumps » thanks to the kalman filter, and facetting mode) – largely insprired from Kogan&Greisen 2009

(2) Does full polarisation DDE correction

 (3) Baseline Dependent Averaging 90 % of the data can be compressed (collaboration with
 O.Smirnov and M. Atemkeng)

(4) Does tesselated images

(5) Does take time-freq-baselinedirection dependent beam into account

(6) Continuity between facets

(7) Takes variable PSF into account (DDE, Smearing/Decorrelation)

(8) Mosaicing (!)

(9) Does spectral deconvolution (Spectral indices + taking beam into account) - 8a : Hybrid Matching Poursuit - 8b : SubSpace Deconvolution

A simulated dataset for wide-band widefield DDE-spectral deconvolution

A simulated dataset for wide-band widefield DDE-spectral deconvolution

A simulated dataset for wide-band widefield DDE-spectral deconvolution

- Also starting from a spectral dirty and (facet-dependent) spectral PSF
- Pixels in SubSpaces (islands) are jointly deconvolved within each island
- Islands are deconvolved independently from each other
- Errors created by ignoring the cross contamination between islands are taken care of by a major loop
- Parallelised per island...

SSD+GA-based spectral deconvolution ... actually quite good at deconvolving complex extended emission

A small fraction of a 20.000x20.000 pixel image

Not the same log-scale

Performance for a VLA dataset

« Lucky exposure » for interferometry incorporated in kMS: work of Etienne Bonnassieux (poster)

A new weighting scheme to change the shape of the « noise psf »

The fun part of 3rd generation calibration: real life dataset

LOFAR Bootes field

48 hours integration, 55 stations, 130-170 MHz

20k x 20k image FOV : 8 degrees

precalibrated by **Tim Shimwell+Alex Mechev**

With Wirtinger calibration and ~ 110 uJy/Beam rms imaging

Without DDE correction

Without DDE correction

Without DDE correction

Without DDE correction

Does it work on other radio telescopes ?

And it also works on ATCA data (Circinus a)

Direction independent calibration

DDE with Wirtinger

And it also works on VLA data

VLA beam model used to construct the Jones matrices

Cherry on the cake : First light MeerKAT image !

- Precalibration in South Africa (Oleg Smirnov et al.)
- Final image synthesized by myself in Nancay (killMS+DDFacet)

Final remarks

- Wirtinger calibration (DDFacet / killMS) are giving good results
 - Ingesting massive amounts of data
- The biggest problem is that it does absorb (some) faint+extended emission
 - To preserve it we need to sacrifice some dynamic range
 - Need to improve over conditionning (after the summer break)
- Imaging
 - Optimal facetting is important : still a lot to do here
 - Going very deep (Bootes field ~120 hours)
 - Easy to plug algorithms in DDFacet

DDFacet available

21:49:23 - DDFacet	starting DDFacet (/media/6B5E-87D0/killMS_Pack/DDFacet/DDFacet/DDF.py testimage.parsetOutput-M
21:49:23 - DDFacet 21:49:23 - DDFacet	working directory is /media/tasse/data/killMS_Pack/DDFacet_Master/TestGA/TestSplitMerge Successfully read parset testimage.parset, version 0.1
21:49:23 - DDFacet	Selected Options:
21:49:23 - DDFacet	- MS = 0000.MS
21:49:23 - DDFacet 21:49:23 - DDFacet	- ColName = CORRECTED_DATA_BACKUP - ChunkHours = 0.0
21:49:23 - DDFacet	- Sort = True
21:49:DEVEIOPHIEHL V 21:49:23 - DDFacet	/C[SIO[1] Predict - ColName = None
21:49:23 https://pypi.py	thon.org/pypi/DDFacet = None = None
21 49:23 Defacet 21 49:2- Do enable Op	tisation options !!!
2 – Do set your m	ax shared memory to 100 %
21:49:23 - DDFacet 21:49:23 - DDFacet 21:49:23 - DDFacet	- DDID = 0 - TaQL = '' - ChanStart
• Proper public release in a few weeks	
21:49:23 - DDFacet 21:49:23 - DDFacet 21:49:23 - DDFacet	- TCagAnts
2 • If you want to a	collaborate, contact us :
2 – Cyril Tasse <c< td=""><td>yril.tasse@obspm.fr> = test_indexW = None</td></c<>	yril.tasse@obspm.fr> = test_indexW = None
2 – Oleg Smirnov	<osmirnov@gmail.com></osmirnov@gmail.com>
21:49:23 - DDFacet	- Images