

Calibratability-by-design for AERA³

Charles and the second

Stefan J. Wijnholds e-mail: wijnholds@astron.nl

MIDPREP Meeting Dwingeloo (The Netherlands), 1 April 2014

Dynamic range is not a suitable figure of merit

Effective noise

- thermal noise
- classical source confusion noise
- calibration noise (estimation noise + penalty for corrections)
- calibration artefacts
- far sidelobe confusion noise (FSCN)
- psf sidelobe confusion noise (PSCN)

Last 5 factors can be mitigated by **design-for-calibratability**

Calibratability: ability to reach thermal noise limit

This requires

- sufficiently low psf sidelobes to avoid PSCN
- sufficiently low station sidelobes to avoid FSCN
- sufficiently long baselines to avoid classical source confusion
- sufficient system stability to calibrate with sufficient accuracy

Overall noise budget

	Assumption	value
thermal noise		1σ
calibration noise	10% penalty for extraction of information in selfcal process	0.1σ
	20% penalty for calibraiton corrections	0.2σ
	thermal noise level after selfcal	1.3σ
source confusion	negligible	0
cal. artefacts	absent	0
PSCN	balanced with thermal noise	1σ
FSCN	balanced with thermal noise	1σ
	effective noise	2.05σ

Assumed specifications

- frequency range: 500 1500 MHz
- regular station array, spacing 13.3 cm (scan range 60°)
- $A_{eff} = min(\lambda^2/3, 0.133^2) m^2$ per antenna
- $A_{phys} = \sim 5000 \text{ m}^2 \text{ distributed over 14 stations}$
- station diameter: 21 m (~20k antennas per station)

•
$$T_{sys} = 1.1 T_{sky} + 40 = 66 \lambda^{2.55} + 40 K$$

• maximum baseline: 1 km

Sensitivity of AERA³

Sensitivity comparable to APERTIF and ASKAP

В т product before hitting classical source confusion limit

If B = 1 MHz, \sim 3 h integration @ 500 MHz, \sim 240 h @ 1500 MHz

- 7 -

Sidelobe confusion noise

- AST(RON
- PSCN inside FoV: individual subtraction down to 100σ
- FSCN outside FoV: 100 sources treated individually
- average station SLL of -42.5 dB, higher if synthesis psf SLL lower

Calibration update rate

one calibration source inside FoV allows update rate < 20 s

five calibration sources requires $\sim 12 \text{ min} @ 1.5 \text{ GHz}$

Self-calibration scheme similar to WSRT feasible

MIDPREP Meeting, Dwingeloo (The Netherlands), 1 April 2014

AST(RON

based on DDE calibration accuracy over 1 MHz after 20 minutes

AERA³ should not have beam accuracy or stability issues

Conclusions

The envisaged AERA³ system...

- has sensitivity comparable to ASKAP and APERTIF
- may hit confusion limit in envisaged deep observations
- requires achievable RMS station sidelobe level of -42.5 dB
- is not likely to suffer from PSCN or FSCN
- is calibratable on timescales of
 - < 20 s for station based effects like clock drifts
 - < 12 min for DDEs like pointing errors
- poses only mild requirements on station beam accuracy