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SKA-low end-to-end system

architecture
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A central bunker will integrate the LFAA beamforming/correlation, signal transport, Maser clock and local

monitoring and control
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LFAA consortium

v’ Project Leader: Jan Geralt bij de Vaate (ASTRON)

v’ Project Engineer: Andy Faulkner (Cambridge)

v’ Project Scientist: Carol Jackson (ICRAR)

v’ Project manager: Andre van Es (ASTRON)

Work Packages:

= Engineering management (Jan Geralt bij de Vaate - ASTRON)
= System Engineering (Andy Faulkner - UCam)

= Antenna and low noise amplifier (Eloy de Lera Acedo - UCam)
= Receiver (Jader Monari — INAF)

= Signal Processing (Kris Zarb Adami — Oxford)

= Array Prototypes (Adrian Sutinjo — ICRAR)

= Local Infrastructure (Tom Booler — ICRAR)

* Local Monitoring and Control (Pieter Benthem - ASTRON)



Component Budget cost for SKA1
(each antenna sub-system)

Antenna Radiating arms, Support structure
Mechanical including base, Electronics housing, €60
components Ground plane (if required), Mechanical
shielding, Fixings
Signal Chain Low noise amplifier, Matching
SEEIGLHTEEEE S components, Amplifiers and filters, Laser
driver, Laser control, Local power €40
regulation, Connectors, Circuit boards,
Shielding mounted on board
Solar power unit Solar cells, Control electronics,
Battery/super-capacitor, Enclosure and €50

fixings, Cable connections and connectors

Deployment Antenna sub-system assembly, Transport

from site receiving area to antenna

placement site, Deployment at site

including final assembly, Accurate €30
positioning and alighment, Connection to

fibre links, Local installation test and

identification
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1 Nov. 2013

1 March 2014

1July 2014

14 Sept. 2014

Oct. 2014

1 April 2015

1 July 2015

31 Dec. 2015

1July 2016

1 Sept. 2016

1 Nov. 2016

Official start of the consortium work. Also, the initial
release of the “Level 1” requirements for the SKA1.

Release of detailed “Level 1” requirements

Preliminary installation plan (including
demonstration plan).

System Requirements Review (documents only)

Preliminary Design Review

AAVS1 Detailed design Review

Completed installation plan including
demonstration

Installation and commissioning of AAVS1 completed

Submit test and evaluation report for AAVS1

Critical Design Review for LFAA, including

submission of manufacturing documentation

Closure of Pre-construction Phase

This needs to show how the
antenna sub-systems will be
installed and how long it takes

Internal draft documentation that
gets submitted to SKAO

Documents and presentation on
way forward

Decide on what actually gets built
for the major demonstrator

Need to show that the
deployment of LFAA can be done
as stated

This should be a complete and
working array

The final big review

End of project
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Introduction

218 3ntennas

Dstation = 35 m
256 antennas/station
Daverage = 1'93 m
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Directivity /dBi
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LFAA Sensitivity

1200
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x
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LFAA Sensitivity (extended band)

AIT per polarization for SKAl
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SKA-low front-end technology development



SKALA: Design

SKALA: SKA Log-periodic Antenna

— Good Impedance
— Pattern width controllable (7:1 band!)
— Low back lobe at high frequencies

Dual polarization

9 wide dipoles: top 2 are not resonant in
band

Maximizing A/T in the +/- 45 deg. Region

A PugC.

Tsys 0.9 - T ad 'TA ( 77rad) TO +Trec

— Distance to ground plane
— Opening angle (trade off: Aeff and XP): 10°
— Antenna size/footprint

— Growing factor



SKALA: Design

n Zdiff

Antenna
for 1 polarization

Differential
LNA

BALUN

oV

|deally; differentially fed for
lowest noise.

Feeding at the top for practical
reasons:

— Avoid Damage in case of flooding

— LNA and electronics (RFoF, etc.) could
be integrated at the top of the
antenna.




SKALA-2

Credit: MIT
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Measurements: Pattern

150 MHz 300 MHz
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$
Measurements: Pattern (with LOFAR) S
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- Also: Beam forming with LOFAR HBA,
cross-correlation, LNA stability over large periods
of time, etc.

- Next: Correlation of LOFAR with SKALA array?



Measurements: Pattern (with Hexacopter - INAF)

quasi E-plane (antenna A), 150 MHz
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Measurements: Near field patterns / Cross-
polarization / IXR

— Next step: Try with Celestial Sources (MWA,
LOFAR).
8 SKALA regular array with source in near field at Zenith
1|:| T T T T T T
| 1 .| ———Wipl-D Zenith Loads
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Credit: B. Fiorelli, ASTRON.



Measurements: LNA

» 15t stage amplifier with Agilent noise analyser in reverberation
chamber.

Measured Noise Temperature (NPL)
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Test arrays

 AAVSO, and AAVSO5:
16 dual-polarised SKALA elements.

* Aim: Test realistic SKA AA-low front-end
technology in an array environment.

— Cross check with simulations: mutual
coupling, embedded element patterns
and noise.

* Tests:

— Mutual coupling.

— Patterns (using near field probe, micro- AAVSO array under test
copter, 2 element interferometer (alt-az
mount), etc.).

— Noise: Hot/cold pointing of the array.
— RFI & satellites.
— Imaging experiment.

— Further tests to check software,
calibration strategies, cross-polarization,
cross-talk, tolerances, lightning modelling
environmental, etc.

e

B e
4 | 2 4

UNIBOARD
back end
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Test arrays

* Mutual coupling
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AAVS0.5: RFI Testing

Position 1 - 99% values:
black: N-S, blue: E-W; RBW = 100 KHz
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* Credit: A. Sutinjo, F. Schlagenhaufer
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AAVSO0.5: 24 hour drift-scan

Observation starting at 23-Jul-2013 13:18:47

Temperature (10log(K)): nT,+T(1-n)

L S S U S S S S S S S e S S S S S S p S S e s e e

T T T T T T

1 1
15 18 21 00 03 06
Local time (hr)

Measured(MRO) - 120 MHz
Calculated (no Sun) - 120 MHz
----- Calculated (with Sun) - 120 MHz

* Credit: A. Sutinjo, P. Hall

SKA MidPrep workshop, ASTRON, NL, 31st

March 2014

Average Temperature [K]: nT,+T,(1-n)
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* 2 minute integration,

e AAVS 0.5 baselines

AAVSO0.5: Correlation with MWA (first
image)

wide-field snapshot,
centred on 3C444

only (but calibrated
using whole MWA)

SKA MidPrep workshop, ASTRON, NL, 31st

March 2014 32



RFoF: 2"protoype
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RFoF: 2"d ptototype performance

Measured RFoF link S21 (New prototype)
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*  Design BW: 50-700 MHz, -60dBm input, <2dB Passband ripple
e 1310nm, single mode G. 652/G. 655 fibre, LC/UPC connector

*  Pros: Good link performance across SKA LFAA band, small footprint (SFP), low power (Tx:
S5V@30mA, Rx: 5V@95mA)

*  Cons: Temperamental connectors (not angled)

SKA MidPrep workshop, ASTRON, NL, 31st

. . . 34
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How configuration affects
astronomical measurements

Irregularity and in particular
randomness are vital for under-
sampled antenna arrays

a o w = o @ ~ @
8 8 3 3 8 8 8 8
s 5 5 3 s s s s

SKA MidPrep workshop, ASTRON, NL, 31st
March 2014
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Effects of mutual coupling in regular
arrays

Frequency / Gz

SKA MidPrep workshop, ASTRON, NL, 31st
March 2014
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Simulations and Calibration for SKA-low



OSKAR2 simulations

Telescope Station layout (core)
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Comparison of VLSS (minus 50 brightest sources) with generated sky model (broken power law; 2M sources)
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MoM-MBF simulation of large irregular arrays

o Based on Method of Moments + MBFs (CBFs) and the interpolation
technique presented in [1], where the computation of interactions between
MBFs is carried out by interpolating exact data obtained on a simple grid.

[1] David Gonzalez-Ovejero, Christophe Craeye, "Interpolatory Macro Basis Functions
Analysis of Non-Periodic Arrays,” IEEE Trans. Antennas Propag., vol.59, no.8,
pp.3117,3122, Aug. 2011



Mutual coupling In
Irregular arrays
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Station_Beam = Array_ Factor x@ge_@

Average Embedded Element Pattern Pattern of a given element



Beam Models for pattern

prediction/calibration (inspired by Jan
Noordam and the 3GC workshops)
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Zernike functions

Picture from Wikipedia



Array factorisation
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Zernike representation of deficiencies in the pattern
Including mutual coupling

- Basis functions = EEPSs.

- They can be pre-computed accurately.
- They are smooth and can be stored with low resolution.
- The variations wrt the simulated response are mapped
using Zernike polynomials.
- They are generic and flexible.

- We can optimize the number of coefficients needed according
to the number of sky sources available.

- The weights for the “predicted” pattern can be found
from the combination of basis functions.



Low Order Beam Models for Calibration

Zernike representation of deficiencies in the
pattern including mutual coupling

m[(a ¢)

= S: Im fTL(Ql ¢)e_j((pi_(pi’0)zm
m=1

i=1

- The Embedded Element Patterns (EEPs) define the
“expected” array pattern.

- The variations with respect to the simulated response are
mapped using Zernike polynomials.*

- The weights for the “reconstructed” pattern can be found
from the combination of basis functions and a least squares
estimation from a few measured points.

*Before: C. Craeye et al. (2012): AP = ), AFyxMBEF,



Use of pre-computed EEPs

= i amif‘,;(e, P00z,

- They can be pre-computed accurately.

- They are smooth and can be stored with low resolution
(enough for main beam and first few side-lobes). Better
simulated EEPs mean less Zernike polynomials needed.

&
6
Spherical Harmonics “2’*“
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Use of Zernike polynomials

I’
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* It is inspired from radiation from apertures, but including
effects of mutual coupling. In here, the Zernike polynomials
map the divergences in the main beam and first side-lobes!

* They are generic

and flexible.

- We can optimize the number of coefficients needed
according to the number of available measurement points.

(o]

Relaive Power (dB)

-50

-10 |

-20 -

-30 |

-40 |

No of elements = 10240, f = 250 MHz,

o
sin(O)*cos(p)

Similar to theory of ~circular
apertures:

Y. Rahmat-Samii and V. Galindo-
Israel, “Shaped reflector antenna
analysis using the Jacobi-Bessel
series,” IEEE Trans. Antennas
Propagat., Vol. 28, no.4, pp. 425-
435, Jul. 1980.

Related work: C. Craeye et al. (2012), R. Maaskant, M. Ivashina, et al. (2012), etc.



Summarizing...
- The array pattern is modeled with (approximately)
computed embedded element patterns.

- Each pattern is multiplied by a constant with smooth
variation over the array (Zernike function)

- Zernike coefficients are estimated in least-squares sense
based on observations.



Tests: Pointing error (2 deg.) - scanning
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*t - number of Zernike polynomials / w : number of measured points.



Tests: Dead elements (10%)
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*t . number of Zernike polynomials / w : number of measured points = 57.



Conclusions and Future Work

 The LFAA array will have a major demonstrator in
Western Australia (AAVS1 with approx. 512

elements) by mid 2015. End of 2016 is the end of
the pre-construction phase.

* Front-end technologies are being developed to
meet the SKA budget and
deployment/mechanical/environmental limits.

 Accurate beam models for calibration are
essential and already exist. Use of UAV systems
and demonstrator arrays are key for these
developments.



Thank you



