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Overview

• The SKA-low array system

• SKA-low front-end technology development

• Simulations and calibration for SKA-low

• Future work and conclusions
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The SKA-low array system

SKA MidPrep workshop, ASTRON, NL,  31st 
March 2014

3



SKA-low end-to-end system 
architecture
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A central bunker will integrate the LFAA beamforming/correlation, signal transport, Maser clock and local 
monitoring and control



LFAA signal flow
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LFAA consortium

 Project Leader: Jan Geralt bij de Vaate (ASTRON)
 Project Engineer: Andy Faulkner (Cambridge)
 Project Scientist: Carol Jackson (ICRAR)
 Project manager: Andre van Es (ASTRON)
Work Packages:
 Engineering management (Jan Geralt bij de Vaate - ASTRON)
 System Engineering (Andy Faulkner - UCam)
 Antenna and low noise amplifier (Eloy de Lera Acedo - UCam)
 Receiver (Jader Monari – INAF)
 Signal Processing (Kris Zarb Adami – Oxford)
 Array Prototypes (Adrian Sutinjo – ICRAR)
 Local Infrastructure (Tom Booler – ICRAR)
 Local Monitoring and Control (Pieter Benthem - ASTRON)
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Antenna Budget

7

Component Includes Budget cost for SKA1 

(each antenna sub-system)

Antenna 

Mechanical 

components

Radiating arms, Support structure 

including base, Electronics housing,

Ground plane (if required), Mechanical 

shielding, Fixings

€60

Signal Chain 

Electronic systems

Low noise amplifier, Matching 

components, Amplifiers and filters, Laser 

driver , Laser control, Local power 

regulation, Connectors, Circuit boards,

Shielding mounted on board

€40

Solar power unit Solar cells, Control electronics,

Battery/super-capacitor, Enclosure and 

fixings, Cable connections and connectors

€50

Deployment Antenna sub-system assembly, Transport 

from site receiving area to antenna 

placement site, Deployment at site 

including final assembly, Accurate 

positioning and alignment, Connection to 

fibre links, Local installation test and 

identification

€30

Totals €180



Timeline of work
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Week Date Event Comments

T0 1 Nov. 2013 Official start of the consortium work. Also, the initial 

release of the “Level 1” requirements for the SKA1.

T0+12 1 March 2014 Release of detailed “Level 1” requirements

T0+34 1 July 2014 Preliminary installation plan (including 
demonstration plan).

This needs to show how the 
antenna sub-systems will be 
installed and how long it takes

T0+46 14 Sept. 2014 System Requirements Review (documents only) Internal draft documentation that 

gets submitted to SKAO

T0+50 Oct. 2014 Preliminary Design Review Documents and presentation on 

way forward

T0+72 1 April 2015 AAVS1 Detailed design Review Decide on what actually gets built 

for the major demonstrator

T0+85 1 July 2015 Completed installation plan including 

demonstration

Need to show that the 

deployment of LFAA can be done 

as stated

T0+11

2

31 Dec. 2015 Installation and commissioning of AAVS1 completed This should be a complete and 

working array

T0+14

0

1 July 2016 Submit test and evaluation report for AAVS1

T0+14

8

1 Sept. 2016 Critical Design Review for LFAA, including 

submission of manufacturing documentation

The final big review

T0+15

6

1 Nov. 2016 Closure of Pre-construction Phase End of project
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• 218 antennas

• Dstation = 35 m

• 256 antennas/station

• Daverage = 1.93 m
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LFAA Sensitivity

SKA MidPrep workshop, ASTRON, NL,  31st 
March 2014

12

Aeff

Tsys q .j

=
l 2

4p
×G

q .j

hrad ×TA + 1-hrad( ) ×T0 +Trec / (1- G
2
)

-80 -60 -40 -20 0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

11

-45o 45o

 /
o

D
ir

e
c
ti

v
it

y
 /

d
B

i

Directivity for different beamwidths

 

 

pattern with BW = +/- 45
o

pattern with BW = +/- 30
o



LFAA Sensitivity
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Tsky = 60 × l2.55



LFAA Sensitivity (extended band)
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LFAA polarization
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SKA-low front-end technology development
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SKALA: Design

• SKALA: SKA Log-periodic Antenna
– Good Impedance

– Pattern width controllable (7:1 band!)

– Low back lobe at high frequencies

• Dual polarization

• 9 wide dipoles: top 2 are not resonant in 
band

• Maximizing A/T in the +/- 45 deg. Region

– Distance to ground plane

– Opening angle (trade off: Aeff and XP): 10o

– Antenna size/footprint

– Growing factor
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SKALA: Design

• Ideally; differentially fed for 
lowest noise.

• Feeding at the top for practical 
reasons:
– Avoid Damage in case of flooding 

– LNA and electronics (RFoF, etc.) could 
be integrated at the top of the 
antenna.
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Example of concept
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Credit: MIT

SKALA-2



Measurements: Pattern
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Measurement

CST Simm
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Measurement

CST Simm
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Measurements: Pattern (with LOFAR)
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NOAA3 sat pass

Simulation

NOAA 3 sat: 137 MHz

- Also: Beam forming with LOFAR HBA, 
cross-correlation, LNA stability over large periods 
of time, etc.
- Next: Correlation of LOFAR with SKALA array?



Measurements: Pattern (with Hexacopter - INAF)



Measurements: Near field patterns / Cross-
polarization / IXR

Near Field 
Scanner does 

not give  
meaningful 

measurements

Next step: Try with Celestial Sources (MWA, 
LOFAR). 

Credit: B. Fiorelli, ASTRON.



Measurements: LNA

1st stage amplifier with Agilent noise analyser in reverberation 
chamber.
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• AAVS0, and AAVS05: 

16 dual-polarised SKALA elements.

• Aim: Test realistic SKA AA-low front-end 
technology in an array environment.

– Cross check with simulations: mutual 
coupling, embedded element patterns 
and noise.

• Tests:
– Mutual coupling.

– Patterns (using near field probe, micro-
copter, 2 element interferometer (alt-az
mount), etc.).

– Noise: Hot/cold pointing of the array.

– RFI & satellites.

– Imaging experiment.

– Further tests to check software, 
calibration strategies, cross-polarization, 
cross-talk, tolerances, lightning modelling 
environmental, etc.

Test arrays

AAVS0 array under test

UNIBOARD 
back end



AAVS0 test array at Lords Bridge



• Mutual coupling

Test arrays
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AAVS0 

• Used so far for impedance and coupling 
measurements in an array environment.

• Full receiver system to be deployed soon to carry 
out pattern, noise and polarisation measurements.

• To be used in conjunction with an alt/az mount for 
measuring antenna patterns using strong sources 
such as Cas-A and Cyg-A.

• Will allow testing of RFoF system in the field.

• Allow development of some early calibration 
strategies.

SKA MidPrep workshop, ASTRON, NL,  31st 
March 2014
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AAVS0.5 test array at MRO, Western Australia



AAVS0.5: RFI Testing

30• Credit: A. Sutinjo, F. Schlagenhaufer



AAVS0.5: 24 hour drift-scan
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• Credit: A. Sutinjo, P. Hall



AAVS0.5: Correlation with MWA (first 
image)
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• 2 minute integration, 
wide-field snapshot, 
centred on 3C444

• AAVS 0.5 baselines 
only (but calibrated 
using whole MWA)



RFoF: 2ndprotoype
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RFoF: 2nd ptototype performance
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• Design BW: 50-700 MHz, -60dBm input, <2dB Passband ripple

• 1310nm, single mode G. 652/G. 655 fibre, LC/UPC connector

• Pros: Good link performance across SKA LFAA band, small footprint (SFP), low power (Tx: 

5V@30mA, Rx: 5V@95mA)

• Cons: Temperamental connectors (not angled)
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How configuration affects 
astronomical measurements
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Irregularity and in particular 
randomness are vital for under-
sampled antenna arrays 



Effects of mutual coupling in regular 
arrays
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Simulations and Calibration for SKA-low
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OSKAR2 simulations
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MoM-MBF simulation of large irregular arrays

 Based on Method of Moments + MBFs (CBFs) and the interpolation
technique presented in [1], where the computation of interactions between
MBFs is carried out by interpolating exact data obtained on a simple grid.

[1] David Gonzalez-Ovejero, Christophe Craeye, "Interpolatory Macro Basis Functions
Analysis of Non-Periodic Arrays," IEEE Trans. Antennas Propag., vol.59, no.8,
pp.3117,3122, Aug. 2011
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Average Embedded Element Pattern Pattern of a given element

Station_Beam = Array_Factor x Average_EEP



Beam Models for pattern 

prediction/calibration (inspired by Jan 

Noordam and the 3GC workshops)



Spherical Harmonics



Average Embedded Element Pattern



Zernike functions

Picture from Wikipedia
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Zernike representation of deficiencies in the pattern 

including mutual coupling

• Basis functions = EEPs.
• They can be pre-computed accurately.

• They are smooth and can be stored with low resolution.

• The variations wrt the simulated response are mapped

using Zernike polynomials.

• They are generic and flexible.

• We can optimize the number of coefficients needed according

to the number of sky sources available.

• The weights for the “predicted” pattern can be found

from the combination of basis functions.



Zernike representation of deficiencies in the 

pattern including mutual coupling

• The Embedded Element Patterns (EEPs) define the
“expected” array pattern.

• The variations with respect to the simulated response are
mapped using Zernike polynomials.*

• The weights for the “reconstructed” pattern can be found
from the combination of basis functions and a least squares
estimation from a few measured points.

Low Order Beam Models for Calibration



• They can be pre-computed accurately.

• They are smooth and can be stored with low resolution
(enough for main beam and first few side-lobes). Better
simulated EEPs mean less Zernike polynomials needed.

Use of pre-computed EEPs

Spherical Harmonics



• It is inspired from radiation from apertures, but including
effects of mutual coupling. In here, the Zernike polynomials
map the divergences in the main beam and first side-lobes!

• They are generic and flexible.

• We can optimize the number of coefficients needed
according to the number of available measurement points.

Use of Zernike polynomials

Related work: C. Craeye et al. (2012), R. Maaskant, M. Ivashina, et al. (2012), etc. 

Similar to theory of ~circular 

apertures:                                            

Y. Rahmat-Samii and V. Galindo-

Israel, “Shaped reflector antenna

analysis using the Jacobi-Bessel 

series,” IEEE Trans. Antennas 

Propagat., Vol. 28, no.4, pp. 425-

435, Jul. 1980.



Summarizing…

• The array pattern is modeled with (approximately)
computed embedded element patterns.

• Each pattern is multiplied by a constant with smooth
variation over the array (Zernike function)

• Zernike coefficients are estimated in least-squares sense
based on observations.



Tests: Pointing error (2 deg.) – scanning 

Scan:

Θ = 45 deg.

Φ = 90 deg.

Error Rec. - Actual

*t : number of Zernike polynomials / w : number of measured points.

t = 36, w = 81 t = 15, w = 16



Tests: Dead elements (10%)

Error Rec. - Actual

t = 3 t = 10

t = 21 t = 36

*t : number of Zernike polynomials / w : number of measured points = 57.



Conclusions and Future Work

• The LFAA array will have a major demonstrator in
Western Australia (AAVS1 with approx. 512
elements) by mid 2015. End of 2016 is the end of
the pre-construction phase.

• Front-end technologies are being developed to
meet the SKA budget and
deployment/mechanical/environmental limits.

• Accurate beam models for calibration are
essential and already exist. Use of UAV systems
and demonstrator arrays are key for these
developments.



Thank you


