

MFAA Array Prototypes

Pieter Benthem - ASTRON Marco Drost - ASTRON

Array Prototypes

- Intro
- SOW
 - EMBRACE
 - SKA Karoo site environmental prototypes (Marco Drost)
 - SKA Karoo site array verification system
- Convince?

- Get to know the system and astonishing results (Torchinsky)
- Create an EMBRACE to-do list (all)
- Get back to you in ~20 minutes. :-)

MFAA-environmental prototypes at South Afrika SKA site

Marco Drost

Who did what, and who paid for it?

Who were involved

- Andre Walker (SKA site SA)
- Eim Mulder
- Hiddo Hanenburg
- Marchel Gerbers
- Marco Drost

April 2014

- Pieter Benthem
- Raymond van den Brink

Production:19 companies involved:

- VDL wientjes Roden
- 3EL
- BOZ
- GuDi
- Partnertec/hummiseal
- Greijn Form Technics
- Kunststof Frees Techniek
- Topa packaging
- Vinemare
- Salomons
- Technische Unie
- International Forwarding Services

Ministerie van Economische Zaken, Landbouw en Innovatie

This project is part-financed by SNN and the European Union, European Regional Development Fund and The Ministry of Economic affairs, Agriculture and Innovation, Peaks in the Delta

- Purpose environmental prototypes
- Thermal aspects
- Prototypes details
- Anchoring
- Early lessons learned

Dutch terp (artificial dwelling hill)

April 2014

MID FREGUENCY APERTURE ARRAY EMBRACE Mouse catcher

April 2014

Four prototypes MID-FREQUENCY APERTURE ARRAY Insulated prototype **Closed** prototype Open modular prototype Open large prototype

MFAA All-Hands

April 2014

Transient analysis

Basic model

April 2014

Thermal analysis result summary

Comparison of Prototype Designs

				Closed	Insulated	Open	Open Large	
		Tmax	°C	47	41	41	38	
	Тор	Tmin	°C	11	13	11	10	
	Of	Material		PP	EPS	PP	EPS	
	Вох	Daily expansion	mm/m	5.4	2.0	4.5	2.0	
		Tmax	°C	51	54	36	38	
	Ground-	Tmin	°C	28	47	20	22	
	plane	Daily expansion	mm/m	0.5	0.2	0.4	0.4	
		Max ∆T in time	°C/h	3.3	1.1	1.9	1.9	

April 2014

Electronics (power dissipation)

Aspects to be tested:

- Variety of connectors
- Cabling
- Shielding
- Variety of components
- Connection to antenna.
- Feed board
- Corrosion

Closed prototypes:

- 4 EMBRACE tiles
- 4 connector boards
- Dissipation ~50W /tile

Open prototypes:

- 4 hex boards
- 4 connector boards
- Dissipation ~16W/hex

April 2014

- Production method: based on injection moulding
- Materials: PP
- Housing design: Closed
- Antenna type: interrupted (EMBRACE tile)
- Placement: Rain gutter frame
- Anchoring: weight
- Coating board: non
- Thermal aspects (simulated):
 - Highest ΔT over time
 - High Tmax

April 2014

DFREQUENCY APERTURE ARRAY INSULATED PROTOTYPE

- Production method: based on LOFAR HBA
- Materials: EPS and PVC foil
- Housign design: Closed
- Antenna type: interrupted (EMBRACE tile)
- Placement: On the soil as is
- Anchoring: Ground anchors
- Coating board: non
- Thermal aspects (simulated):
 - Lowest ΔT over time
 - Highest Tmax

April 2014

Open large prototype

- Production method: Antenna as structure
- Materials: Al frame, EPS and PVC foil
- Housing design: Open
- Antenna type: Continued W-shape
- Placement: Al frame
- Anchoring: Weight and foil to frame
- Coating board: yes
- Thermal aspects (simulated):
 - low ΔT over time
 - low Tmax

DFREQUENCY APERTURE ARRAY Open modular prototype

- Production method:
 - Vacuum formed roof
 - Injectionmoulded feet
 - Extruded roof pipes
- Materials: PP, PVC
- Housign design: Open
- Antenna type: interrupted W-shape
- Placement: Plastic feed
- Anchoring: Cable matrix, ground anchors
- Coating board: yes
- Thermal aspects (simulated):
 - Low ΔT over time
 - Lowest Tmax

Environmental prototypes (result)

April 2014

April 2014

Anchor (endurance) test

- Max holding and setting: 11 types tested
- Endurance test: 5 where used
- Prototypes: 2 types where used for the prototypes

April 2014

Early lessons learned

- Transporting something over seas is not that easy
- South Africans are greet people to work with
- South Africa is beautiful
- Big country
- Fun to drive with a 4x4
- It can rain a lot
- Many hands make light work and anything is possible
- Very warm
- High solar loads
- A lot of dust especially in combination with wind
- Which results in looking like this!

April 2014

• Any good thoughts or.....

• Tell me what to type here..... !

- Continue with engineering tests providing relevant information as input for the next AA-Mid demonstrator.
 - Subjects are: (on frequency, scan angle, time,)
 - beam shape
 - Stability
 - sensitivity
- Improve (tileset) calibration
 - What is holding us from improving beyond the current accuracy?
 - Create and maintain phase calibration database, to obtain a better defined pointing model.
- Increase bandwidth
 - Use all beamlets of current backend
 - Upgrade to Uniboard (2) backend

April 2014

- Regular observations (semi weekly) of pulsars, CasA, CygA and TauA to demonstrate EMBRACE as a facility instrument.
 - a good demonstration of long term stability and reliability
 - demonstrate dual beam widely separated simultaneous pulsar detections
 - possible detection of an accretion event on B0329
 - Simultaneous observations of Cas A and Cyg A and demonstrate beam swapping to find the flux ratio of the celestial sources;
 - Long term observations of Cas A, to measure 1% flux change and demonstrate long term stability of EMBRACE and flux calibration.
- Galactic observations (M33 / M31 / M42)
 - Multi beaming
- Create full HI map
 - Dwingeloo Leiden survey
 - Detect Galactic neutral hydrogen with higher sensitivity;
- VLBI with EMBRACE@Nancay and EMBRACE@Westerbork
- Correlate with WSRT dish
- Summer school / busy week(s)

On site array verification system

- Testbed Frontend workpackage prototypes
 - Full signal chain test setup
 - Prototype arrays
- RFI monitoring

MFAA initial station(s), including beamformer & postprocessing

