

AAMID Front-End Design

David Zhang – The University of Manchester Roel Witvers – ASTRON Hao Qin – KLAASA Sangitiana Harison – Obs. de Paris, Nancay Edgar Colin – University of Cambridge

□ Front-End Design Team

- Review of Front-End Design for SKA AAMID
- Current progress status
- Forward Project Planning
- Closer Collaboration regime

The Front-End Design Team

Front-End Design Team

Front-End Design Sub-teams

Selection Criterion Document Writing Team

D. Zhang/M. Yang Roel Witvers/Benedetta Fiorelli Rui Cao/Hao Qin Stéphane Bosse/Sangitiana Rako

Measurement Team

D. Zhang/M. Yang Roel Witvers/Pieter Benthem/Benedetta Fiorelli Rui Cao/Hao Qin Stéphane Bosse/Sangitiana Rako

Review of Front-End Design for SKA AAMID

EMBRACE Designed by ASTRON

72 elements become active, and the active input impedance for the centre element

Finite ORA Array

4 x 4 elements become active, and the active input impedance for the centre element

ORA with Manchester LNA

Noise measurement with a 4x4 beamformer

ORA with AVAGO LNA (CCL)

The Current Status

Manchester

The Manchester Antenna Design

Element spacing for the current design: 125mm Frequency band: 350-1450MHz

The array aperture needs a certain size to have immersed elements demonstrating a similar EM performance as in an infinite array

Finite Array Simulation

8 x 8 and 10 x 10 finite arrays are simulated, indicating a minimum aperture size of 1 m² is required for the initial prototype panel

The active input impedance

REQUENCY APERTURE ARRA

The centre element of 10 x 10 finite active array has a similar active input impedance characteristic as in an infinite array

ORA Technology for Aperture Array

- The Octagonal Ring Antenna (ORA) represents a novel and potentially breakthrough technology using a planar, easily fabricated structure for dual polarised wideband aperture array
- Stable cross polarisation performance over wide scan angle in broad frequency range
- The fundamental Electromagnetics have been confirmed. The applications can be other than radio astronomy
- Three patents for ORA has been applied for, one granted to date

ASTRON

Outline

- Outline
- Low Noise Tile goals
- LNT board results
- 2x2 array results
- Wideband LNT design
- First results
- Conclusion

Low Noise Tile

Goals:

- Improve NT of Phased Array Tile
- New LNA board design

Frequency range	1.0-1.75 GHz
Noise Figure LNA	< 25K
Gain LNA	>20dB

Low Noise Tile Single Element Results

Low Noise Tile 2x2 array results

Wideband LNT simulations

Simulation Wideband LNT board Antenna at input

including filter, no limiter

Wideband LNT first results

Corrected for skynoise

Conclusion

- LNT gives 15K improvement over previous design
- Wideband LNT board gives promising results below 1GHz
- Present Apertif antenna element useable from 750MHz

To Do:

- Tuning of design for lower NT below 1GHz
- LNT and Wideband LNT need to be measured in an Array (LNT will be measured soon at Parkes)

KLAASA

KLAASA/CETC38 SKA (MFAA)

The Square Kilometre Array

Exploring the Universe with the world's largest radio telescope

CETC38 02/04/2014

Work carried out in KLAASA

Low-temperature-noise test

optical/electric transceiver

♦ LNA

What to do next

AA-mid Architecture

Main point: analogue + digital BF (ADC and DSP1042 of KLAASA)

Initial Prototype

AA-mid: Current Progress

- Frequency: **300-1600 MHz**(**300-1000 MHz**)
- No. receiver channels:16/tile
- NF: ≤0.7 dB(50 K)
- Range: ≥40 dB (single channel)
- Ripple in band: $\leq 2 \, dB$
- Channels coherence:
 - ✓ Amp. : ≤**0.5 dB** (**rms**)
 - ✓ Phase : \leq 5.0° (rms)
- BW: 250 MHz
- Way of cooling: **natural**
- Connectors: Voltage supply 5V, optical transport data rate 10 G/S
- Reliability: SKA requirement
- Temperature requirement: -40°C~+50°C

 $1.5m \times 1.5m$ double-polarized vivaldi antenna array

The delay-line based on Integrated Passives Device technology

Antenna Array with feeding method 1

Microstrip ROGERS RO4003C

Antenna Array with feeding method 2

Aluminum conductor

Work carried out in KLAASA

Low-temperature-noise test

optical/electric transceiver

♦ LNA

What to do next

博微 中国电子科技集团公司

receiver (feed included)

$$\implies T_{e1} = \frac{T_h - YT_c}{T - 1}$$

With T_h (K) temperature of hot load T_c (K) temperature of cold load (liquid Nitrogen 77K, cold sky 6K)

Low-noise-temperature test

Table1 Test data with liquid Nitrogen as cold load(T _c =77 K)									
Freq. (GHz)	1	2	3	4	5	6	7	8	9
Hot power (dBm)	19.605	18.257	18.142	20.241	18.382	18.262	17.512	17	17.23
Cold power (dBm)	15.251	13.897	13.666	15.665	13.887	13.696	13.166	12.685	12.851
Y-factor (dB)	4.354	4.36	4.476	4.576	4.495	4.566	4.346	4.315	4.379
Noise Temperature (K)	40.66	40.41	35.59	31.66	34.83	32.04	41.00	42.35	43.

An example

Table2 Test data with cold air as cold load($T_c=6 K$)

Freq. (GHz)	1	2	3	4	5	6	7	8	9
Hot power (dBm)	19.7125	18.354	18.251	20.341	18.465	18.371	17.621	17.105	17.
Cold power (dBm)	11.4785	10.116	9.371	11.191	9.575	9.401	9.271	8.965	9.29
Y-factor (dB)	8.234	8.238	8.88	9.15	8.89	8.97	8.35	8.14	8.05
Noise Temperature (K)	42.367	42.36	34.7	31.96	34.67	33.77	40.9	43.67	44.9

Work carried out in KLAASA

Low-temperature-noise test

optical/electric transceiver

♦ LNA

What to do next

Initial o/e transceiver for LFAA

Voltage supply=5 V,
$$I_{modulation} + I_{biasing} = 20 \text{ mA}$$

 \rightarrow Power laser driver= 100 mW

Frequency: $50 \sim 675$ MHz; RF input: $-45 \sim -5$ dBm; Insertion loss: < 25dB; VSWR: < 2.0; Wavelength: 1550nm; Output power: > -8dBm; Temperature: $-40 \sim 55^{\circ}$ C;

博微 中国电子科技集团公司

Volume: $24 \times 24 \times 8 \text{mm}^3$

Initial o/e transceiver for LFAA

Maximum $I_{collector} < 20$ mA, power consumption of RX < 100 mW

Frequency: $50 \sim 675$ MHz; Insertion loss: < 25 dB; VSWR: < 2.0; Wavelength: 1550 nm; Temperature: $-40 \sim 55$ °C;

mW o the second se

Volume: $190 \times 20 \times 10 \text{ mm}^3$

Work carried out in KLAASA

Low-temperature-noise test

• o/e receivers

LNA design

What to do next

LNA

Electrical performance (V_{CC}=3.3 V, I_{CC}=40 mA)

Parameter	Freq. (GHz)	Min.	typical	Max.
Gain (dB)	0.4-1.6	15	20	23
Input/output return loss (dB)	0.4-1.6		10	
Reverse isolation (dB)	0.4-1.6	20	24	28
P _{1dB} (dBm)	0.4-1.6 ($T_A = 25^{\circ}$ C)		8	
OIP ₃ (dBm)	$0.4-1.6 (T_A=25^{\circ} C)$			
NF (dB)	$0.4-1.6 (T_A = 25^{\circ} C)$	0.49	0.52	0.56
Icc (mA)			40	

Single ended

1.2

1.0

freq, GHz

0.8

1.4 1.6

1.8 2.0

0.0

0.2

0.4 0.6

RFfreq

Work carried out in KLAASA

Low-temperature-noise test

• o/e receivers

Differential LNA

What to do next

Work in 2014

Schedule for AA-mid

Obs. de Paris, Nancay

LNA for ORA

Antenna impedance given by Manchester

•LNA design with NXP QUBIC4Xi Process technology

•Two topologies used in differential configuration:

LNAEd: two common emitter topology
 LNACd: cascode topology
 Simulation based on a measured active
 impedance as source of the LNA
 DC power = 3.3V
 LNA in OEN peakees

•LNA in QFN package.

LNA for ORA : LNACd

S-parameters (dB) -20 Sdd11 Sdd22 -25 0.3 0.4 0.5 0.8 0.9 1.2 1.3 0.6 0.7 1.0 1.1 1.4 freq, GHz

LNA simulation with a measured active input impedance for the centre element as the source impedance for the LNA. The topology used is a cascode in differential configuration.

freq, GHz

LNA for ORA : LNAEd

LNA simulation with a measured active input impedance for the center element as the source impedance for the LNA. The topology used is a two common-emitter in differential configuration.

AAMID 2014

The next step in SKA Technology

April 2nd, 2014 ASTRON, Dwingeloo

Logarithmically Periodic Dipole Antenna for the SKA Mid-Frequency Aperture Array

Dr. Edgar Colin Beltran (Visitor Researcher [INAOE-MEXICO]) <u>edgarcb@mrao.cam.ac.uk</u> Dr. Andrew Faulkner <u>a.faulkner@mrao.cam.ac.uk</u> Dr. Eloy de Lera Acedo <u>eloy@mrao.cam.ac.uk</u>

> Astrophysics Group, Cavendish Laboratory University of Cambridge

LFAA array requirements

Array antenna requirements

Introduction

According to White paper SKADS 2009 Sensitivity = 10,000 m²/K @ 800 MHz Tsys = 60 K is assumed

Embrace/ORA125mm need 38,400,000 cells LPD needs 8,156,939 antennas (cells) 4 to 5 times less elements

Log-Periodic Mid-Frequency design (one polarization)

Parameter	Goal
Bandwidth	0.3 – 1.45 GHz FBW(131%) ~ 5:1
FoV (Beamwidth)	+/- 45°
System Noise	≤ 35 K
Polarization	2 linear
Impedance	~ 100 Ω

LPMF simulated results

Theta [°]

Unbalanced feeding

The Forward Planning

Front-End Timeline Stage 1

MID-FREQUENCY APERTURE ARRAY

Project Timeline Stage 2

MID-FREQUENCY APERTURE ARRA

Highlights of the milestones

- A measurement document will be produced to describe the detailed measurement items for Front-End study as soon as the requirement specification for AAMID becomes available
- A research Front-End prototype panel from each design to be ready by June 2015, combined efforts to make measurements in the stage 1
- Larger prototype arrays are planned for the stage 2 study, comprehensive on-site measurements is planned

The Closer Collaboration Regime

The stronger link

- There is a need to build a stronger link to deliver. There will be three key reviews in stage 1 initially on 01/04/14, 15/10/14 and 01/06/15, but a regular meeting will be arranged.
- Manchester will invite one or two engineers from KLAASA to Manchester to collaborate on design 2 and design 3 (and once a month tele-conf).
- Regular communication(Bi-weekly tele-conf) between Manchester and Nancay will be established.

if SKA == MFAA

then MFAA = AAMID Front-Ends

Thank you