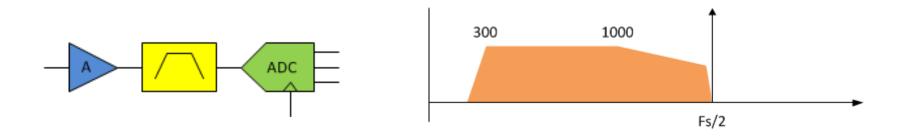


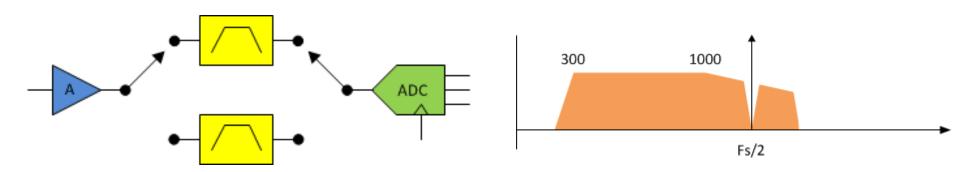
All hands meeting MFAA/Receiver Analogue-to-Digital Conversion

Stéphane Gauffre from "Université de Bordeaux"



- 1. Digitisation concepts for MFAA
- 2. Digital platform
- 3. Commercially available ADCs
- **4. Full custom ASICs solution**
- 5. Development plan
- 6. Deliverables
- 7. Technical staff
- 8. Risk analysis

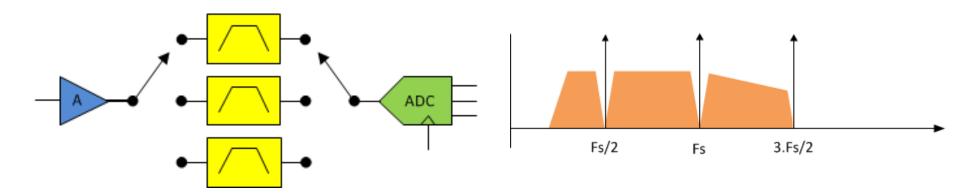
- Wide band direct RF sampling
 - ADC: sampling \geq 3 GSps, bandwidth > 1450 MHz
 - First Nyquist zone



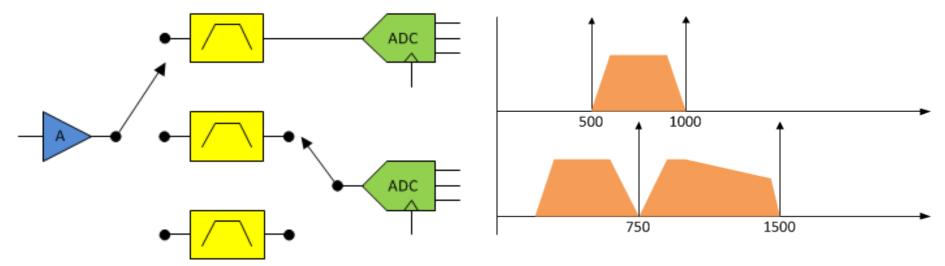
Digitisation concepts for MFAA

Direct RF sampling

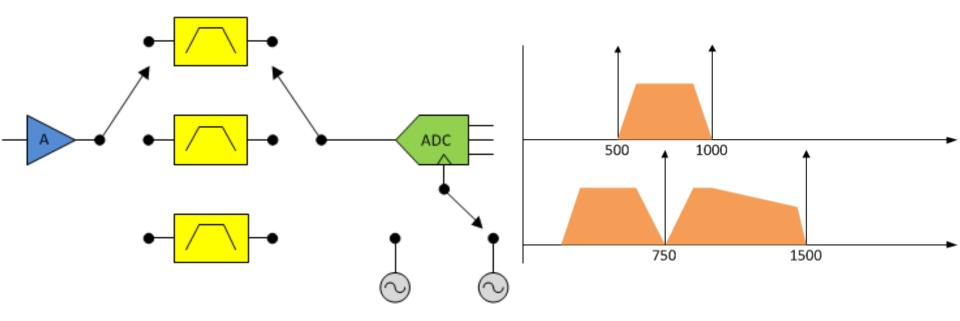
- ADC: sampling \geq 1.5 GSps, bandwidth > 1450MHz
 - First and second Nyquist zones
 - « Hole » around Fs/2. If Fs > 2 GSps, no « hole » in the 300-1000 MHz band.



Digitisation concepts for MFAA


• Direct RF sampling

- ADC: sampling \geq 1 GSps, bandwidth > 1450MHz
 - First, second and third Nyquist zones
 - « Holes » around Fs/2 and Fs



- Direct RF sampling (bands overlapping)
 - Use of two ADCs to have a frequency bands overlapping
 - For example: one sampled at 1 GSps, the other at 1.5 GSps

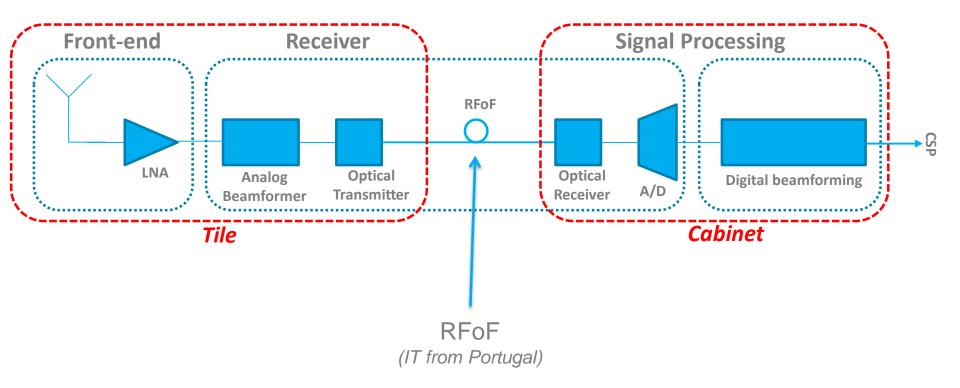
- Direct RF sampling (bands overlapping)
 - Use of 2 switched clock circuits to have a frequency bands overlapping

Digitisation concepts for MFAA

MID-FREQUENCY APERTURE ARRAY

Concepts comparison

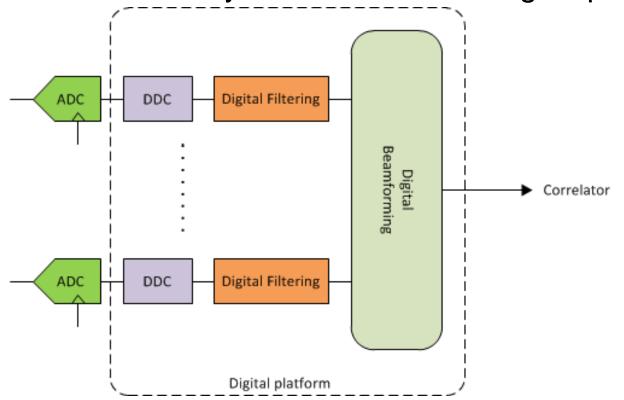
Digitisation concepts	Advantages	Disadvantages
First Nyquist zone	-Only one anti-aliasing filter -No hole in the frequency band	-Highest cost -Highest power
First and second Nyquist zones		-Cost of ADCs -Hole in the frequency band -2 switched anti-aliasing filters
First, second and third Nyquist zones	-Lowest cost -Lowest power	 -Holes in the frequency band -3 switched anti-aliasing filters
Frequency bands overlapping	-No hole in the frequency band	-Need two switched clock circuits -3 or more switched anti-aliasing filters


Digital platform

MID-FREQUENCY APERTURE ARRAY

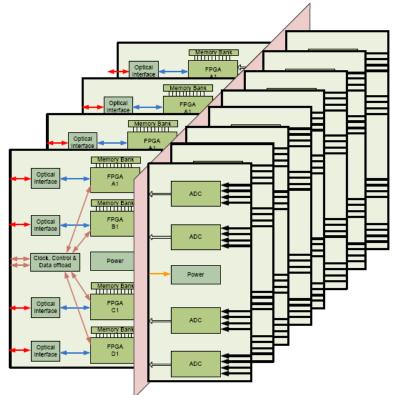
Analog tile concept

- ADCs are directly connected to the digital platform


Digital platform

ullet

Analog tile concept


- ADCs are directly connected to the digital platform

Digital platform

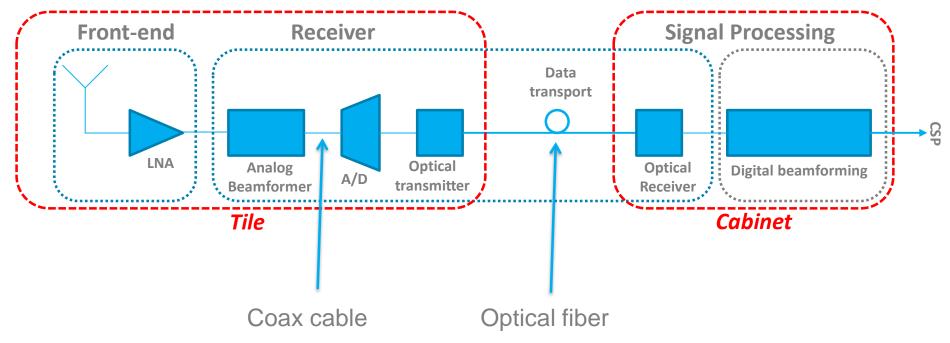
- Uniboard²
 - Multi-ADC boards connected to the BN side via special backplane
 - BN side:
 - No LVDS ports
 - JESD204B standard

Commercially available ADCs

Ref	Man	bit	MSps	GHz	W	Chan	Outputs	Cost	
ADC12J4000	TI	12	4000	3.3	2.0	1	JESD204B	1350\$	new
ADC12J2700	TI	12	2700	3.3	1.8	1	JESD204B	850\$	new
ADC12D1800RF	ΤI	12	1800	2.7	4.3	2	LVDS	2600€	
ADC12J1600	ті	12	1600	3.3	1.6	1	JESD204B	510\$	new
ADC12D1600RF	ΤI	12	1600	2.7	3.9	2	LVDS	1900€	
ADC10D1500	ΤI	10	1500	2.8	3.6	2	LVDS	1400€	
ADC10D1000	ΤI	10	1000	2.8	2.8	2	LVDS	1075€	
EV10AS152A	e2v	10	3000	5.0	6.0	1	LVDS	1180€	
EV10AS150B	e2v	10	2600	5.0	6.2	1	LVDS	953€	
EV10AS180AGS	e2v	10	1500	2.25	1.8	1	LVDS	-	
EV10EQ180A	e2v	10	1250	3.2	5.6	4	LVDS	615€	
AD9680 (NDA)	ADI	14	1000	-	-	2	JESD204B	-	new
AD9625 (NDA)	ADI	12	2500	-	-	1	JESD204B	-	new
AD9234 (NDA)	ADI	12	1000	-	-	2	JESD204B	-	new

Commercially available ADCs

- Evaluation of ADCs which embed the JESD204B standard
 - ADC12J4000 (12-bit) from TI
 - Evaluation board: first results
 - Time-interleaved architecture
 - ENOB of 8 at 3 GSps
 - Engineering sample
 - Production for Q3 of 2014

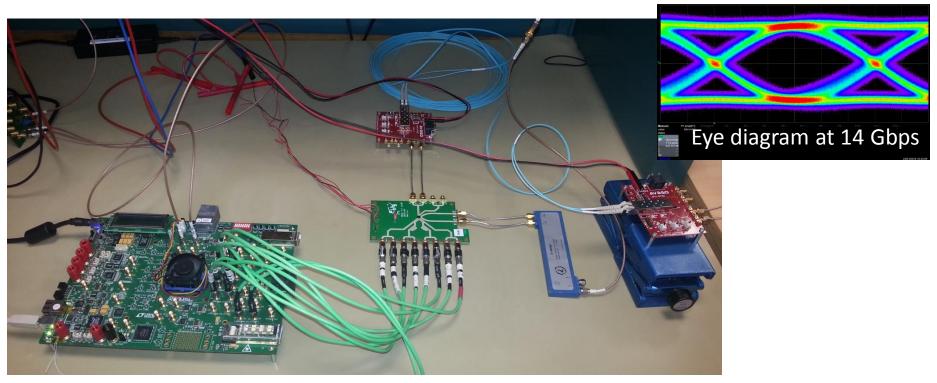


- Evaluation of ADCs which embed the JESD204B standard
 - ADCs from ADI (next month)
 - AD9625 (12-bit): time-interleaved architecture?
 - Sampling at 2.5 GSps
 - AD9234 (12-bit) or AD9680 (14-bit):
 - Possible common multi-ADCs board for both AA.
 - □ 2 switched clocks: one at 1 GSps, the other at 750 MSps
 - 4 switched anti-aliasing filters: 400-600 MHz, 600-900 MHz, 900-1100 MHz and 1100-1450 MHz for MFAA
 - □ For LFAA: one clock at 1 GSps, one filter (50-350 MHz)
 - Contact with ADI guys (evaluation boards required)
 - Components and datasheets available before mid-2014.

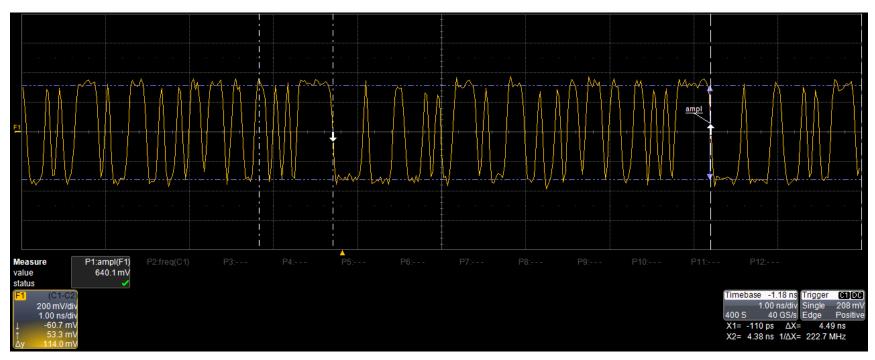
- Developed in the framework of AAIR project
 - All ASICs in 250nm BiCMOS from NXP
- Digital tile concept

- ADC associated to a serializer circuit to reduce digital optic links between antenna and bunker (digital platform)
 - 8-bit, 3.5 GSps, flash folding and interpolating ADC (<1W)
 - Modeling is in progress (ENOB > 7.3 at 3 GSps)
 - Will be sent to NXP foundry in October 2014

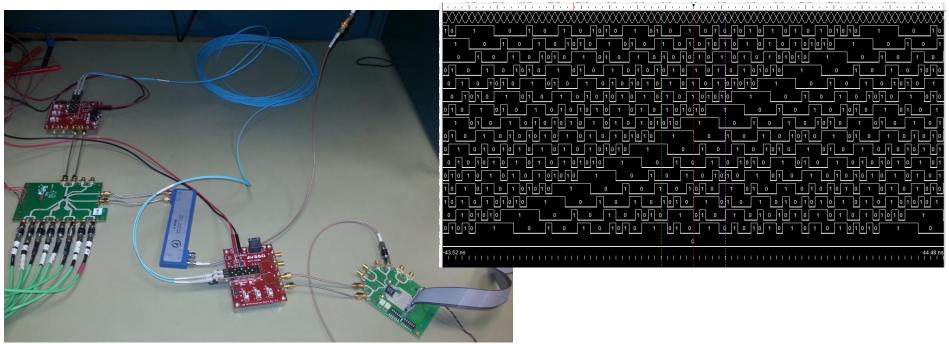
Full custom ASICs solution


- 8 to 2 serializer circuit at 14 Gbps (1W)
 - 4 to 1 serializer circuit at 14 Gbps: already validated
 - The PLL at 7 GHz, which drives the serializer was received in January 2014. Its characterisation is in progress.
 - 8:2 serializer circuit without PLL will be sent to NXP foundry in April 2014
 - The complete serializer circuit will be sent to NXP foundry in October 2014

Full custom ASICs solution


MID-FREQUENCY APERTURE ARRAY

 First results: 4:1 serializer circuit associated to a 16 GFC optical link


- First results: 4:1 serializer circuit associated to a 16 GFC optical link
 - PRBS7: correct bit sequence at 14 Gbps

Full custom ASICs solution

- First results: 4 to 1 serializer circuit associated to a 16 GFC optical link
 - Data demultiplexed by 16 to connect to Uniboard1

Development plan

- Analogue tile concept: Commercially available ADCs
 - Selection: May or June 2014
 - First ADC board prototype: connected to Stratix5 GX development kit
 - Manufacturing in September 2014
 - Characterisation in Q4 of 2014
 - First multi-ADCs board prototype (Uniboard²):
 - Manufacturing in Q1 of 2015
 - Characterisation in Q2 of 2015

- Digital tile concept (AAIR project): Full custom ASICs
 - Flash folding and interpolating ADC and 8:2 serializer circuit
 - manufacturing in Q4 of 2014
 - Characterization in Q1 of 2015
 - Digitisation board and digital board (Uniboard or Uniboard²)
 - Manufacturing in Q3 of 2015
 - Characterisation in Q4 of 2015

- Digitisation concepts description for MFAA
- Evaluation report for commercially available ADCs (analog tile concept)
- Evaluation report for digital data transfer via optical fiber (digital tile concept)
- Design reports for full custom ASICs (ADC and serializer circuit)
- Test reports for full custom ASICs
- Interface control document

- Design reports for electronics cards (multi-ADCs board, digitisation board and digital interface board)
- Test reports for electronics cards
- Reliability and maintenance analysis report
- Risk analysis report
- Cost estimation report for production

Technical staff (key persons)

- Stéphane Gauffre from U. Bordeaux: ADC task leader, permanent position
 - ASIC and PCB designer
- Benjamin Quertier from U. Bordeaux: Head of electronics laboratory of LAB, permanent position
 - Expert in digital electronics
- Bruno Da Silva from O. de Paris: permanent position
 - ASIC designer (full custom ADC)
- Antsa Randriamanantena from U. Bordeaux: recruited for 2 years
 - Expert in digital electronics
- Hermann Andriantafika from U. Bordeaux: Ph.D Student
 - ASIC designer (serializer circuit)

- Full custom ASICs could not meet the specifications.
 - Develop a solution with COTS. Evaluation of commercially available ADCs
- Our development plan depends on NXP foundry schedule. Some deliverables could be delayed for full custom ASICs solution.

- Develop a solution with COTS.

- The ADC will be associated to logic components (FPGA) and to a clock circuitry (PLL). These components generate spurious frequencies which could pollute the analogue signal.
 - A simple shielding box is not sufficient to minimize the Radio Frequency Interference. Careful design should be done for RFI mitigation: placement and shielding of critical components, power supply decoupling.
- Manpower is limited. This could add delays in the schedule
 - The Key persons have permanent positions
 - A work redistribution should be done to minimize delays.