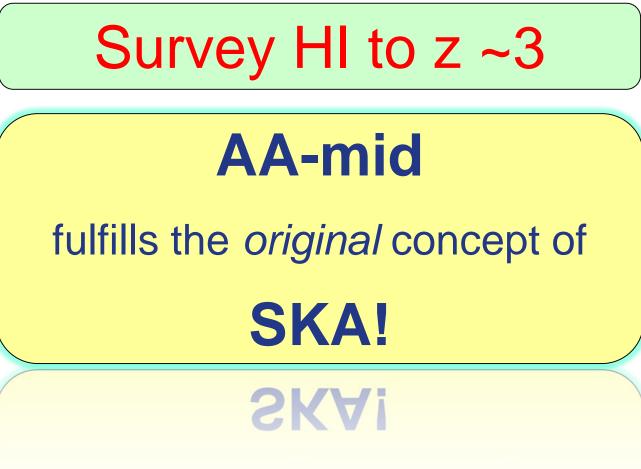
MFAA System Engineering

....

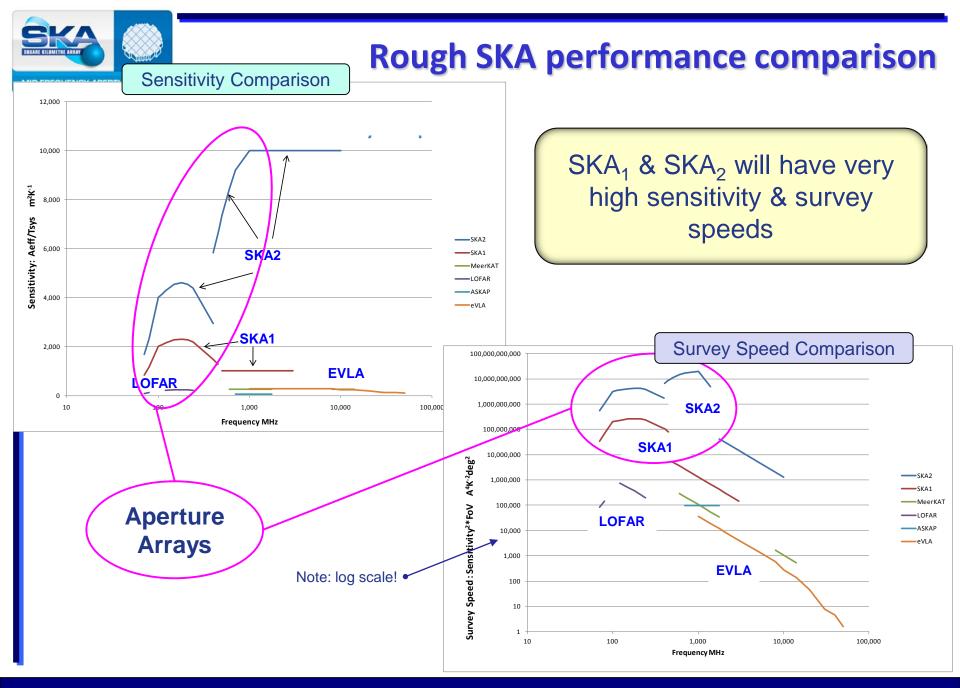

.....

11.1

.....

Andrew Faulkner

runns me *original* concept or


MFAA All-Hands

Benefits of aperture arrays

- At lowest frequencies, <~300MHz, the only realistic way sufficient collecting area
- Unsurpassed ability to create Field of Vigent and multiple beams
- Extremely flexible in observation provide the second second
- Can run multiple a concurrently
- Using a large and unt of up front processing they mitigate the backend ploce sing load
 - tune imaging coverage, beam size, post-processing load etc.

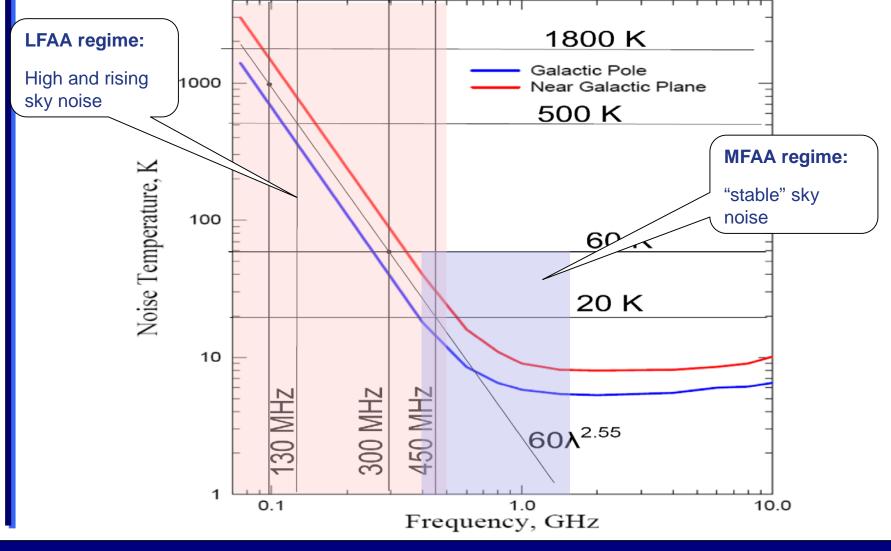
Processor based AAs provide new opportunities

April 2014

MFAA All-Hands

Tough Dynamic Range requirements...

- AA is operating at low frequency **?** Tricky
- Physical stability (wind etc.)
- Unblocked aperture
- Smaller beams are better
- Narrow band is important
- Calibration capability
- Trade DR for sensitivity



Tough Dynamic Range requirements...

- AA is operating at low frequency
- Physical stability (wind etc.)
- Unblocked aperture
- Smaller beams are better
- Narrow band is important
- Calibration capability
- Trade DR for sensitivity

- ? Tricky
 - ✓ Good, study details
 - ✓Inherent
 - ✓~56m collectors (AA-mid)
 - ✓ AA is Wide Band *but* many channels
 - ✓ Excellent, by channel
 - \checkmark AA v. flexible

April 2014

MFAA All-Hands

Consider a SKADS-SKA....

Freq. Range	Collector	Sensitivity	Number / size	Distribution	
70 MHz to 450 MHz	Sparse Aperture array (AA-lo)	4,000 m²/K at 100 MHz	250 arrays, Diameter 180 m	66% within core 5 km diameter, rest	
400 MHz to 1.4 GHz	Dense Aperture array (AA-hi)	10,000 m²/K at 800 MHz	250 arrays, Diameter 56 m	along 5 spiral arms out to 180 km radius	
1.2 GHz to 10 GHz	Dishes with single pixel feed	5,000 m²/K at 1 GHz	1,200 dishes Diameter 15 m	50% within core 5 km diameter, 25% between the core and 180 km, 25% between 180 km and 500 km radius.	

Major surveys are <1.4 GHz: below HI line

Is 10,000 m²/K essential at all frequencies?

April 2014

March

SKA

From:

March 2010

MFAA All-Hands

System Engineering

110

AA-mid likely principal specifications

Parameter	AIP:	SKA	SKA Phase 2	Comments
	Adv. Inst. Package	Phase 1		
Frequency range	400-1450 MHz	-	400-1450 MHz	Want to get to rest HI line
Max. Instantaneous	~300 MHz	-	1050 MHz	Ability to get full bandwidth
Bandwidth				
Max scan angle	±45°	-	±45°	Or wider with reduced sensitivity
Field of view	>2 beams	-	200 deg ²	Many beams are used
Sensitivity (@ 800 MHz)		-	10,000 m²K ⁻¹	
T _{sys} @ 1000MHz	<50 K	-	< 50K	Ideally reduced T_{sys} of <40 K for SKA ₂
Polarisation separation	Tbd	-	30-40dB	Same as LFAA
Imaging dynamic range	Tbd	-	74 dB	The capability requirement for high
capability				dynamic range is very challenging
Array output data rate	<1 Tb/s	-	16 Tb/s	Data rate defines performance
Array diameter	~15 m	-	56 m	AIP has a number of arrays for test
No. of arrays	TBD	-	250	Or maybe the same as LFAA - 1024
Configuration	Small array	-	66% >5 km	
Max. Sensitive Baseline	~5 km	-	180 km	TBD

- Survey speed requirement as a function of frequency
- Point source sensitivity as a function of frequency
- Polarisation performance
- Scan angle sensitivity as a function of frequency
- Maximum baseline requirements

Opportunity Questions

- Ability to have transient buffers
- Independence of stations (e.g. ability to "watch" pulsars continuously)
- Alternative post processing algorithms

LFAA knowledge (will be useful!)...

- Design of a very large array
- Performance capabilities of a (very) sparse array
 Station beamforming techniques

- Use of a flexible data network for signal transmission and steering
- RFoF analogue transmission capabilities
- Calibration techniques
- Defining alternative station sizes, apodisation approaches etc.

Some SKA AA-mid challenges.....

Highest frequency, ideally:

Close spaced elements (if dense):

Low T_{sys} at ambient temperature:

Very large number of components

Constraining power and cost

Manufacturability and reliability

Calibration...

Constant antenna pitch across a station

1,450 MHz

~15cm pitch

≤40K

April 2014

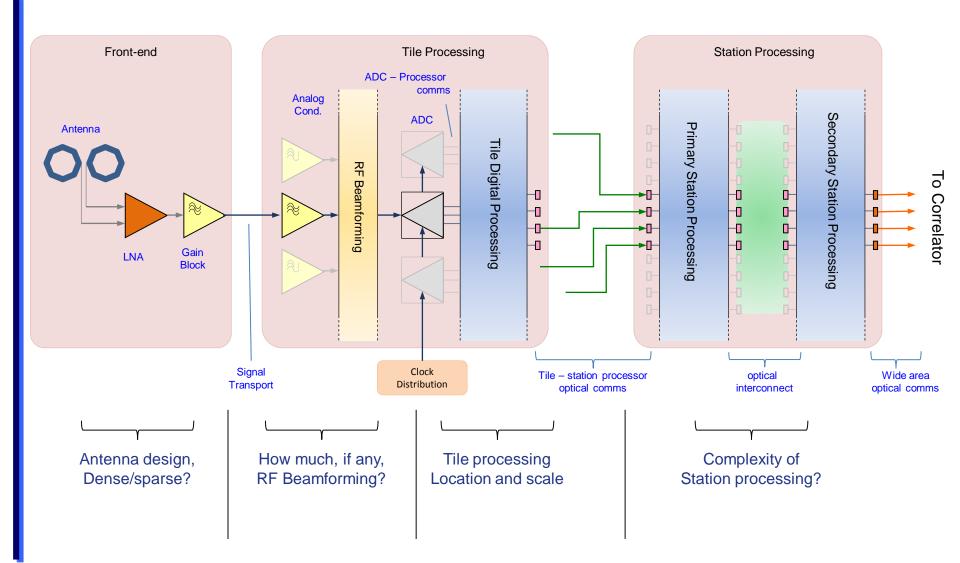
What is the AA Power challenge...?

Lan awful lot of "stuff"

AA-mid technology trends

- High volume IT system: mass manufacture is understood
- Processing is getting cheaper, it is ~10years before deployment
- Exascale developments are of direct benefit to MFAA:
 - Processing architectures
 - Power
 - Internal communication networks
 - Integration
- Digital always overtakes analogue for size/cost/performance eventually
- Communications gets faster for cost/power with time

Major benefits for MFAA


AA-mid paradigms to challenge...

For example:

- Science :
 - How can the sensitivity/survey speed vary with frequency?
 - Trade-off beams and sensitivity for survey speed

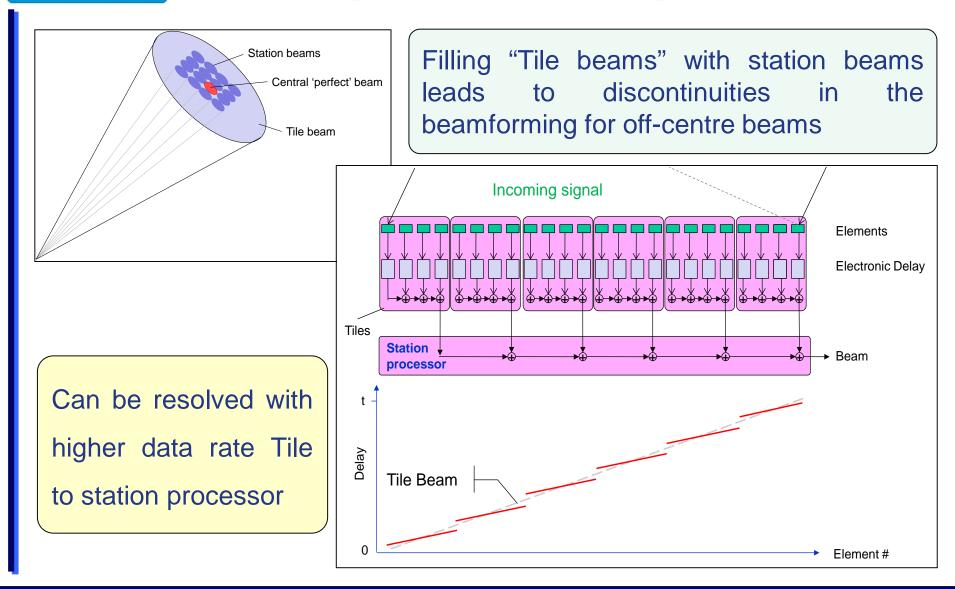
- Technology
 - Could the array be random, sparse...?
 - Why can't we have 5:1, 7:1 or more frequency range?

Generic AA-mid signal path

April 2014

MID-FREQUENCY APERTURE ARRAY

MFAA All-Hands

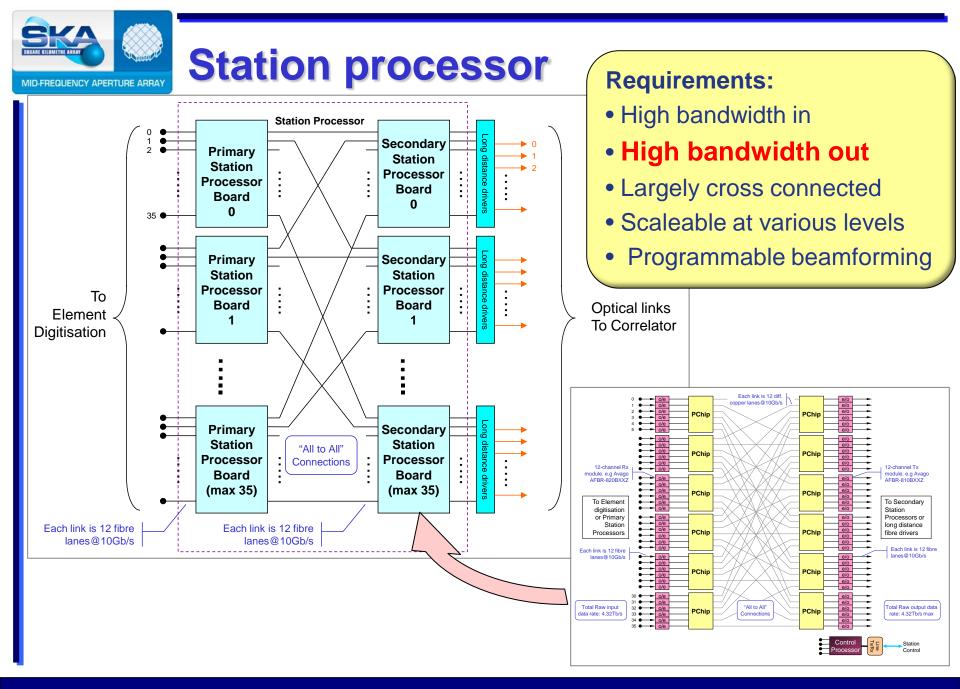

1st stage Beamforming technology

Tech.	Technique	Benefits	Disadvantages	Comments
Analo	gue	Cheap – at present	Each beam has own hardware Limited calibration ability Stability over time & temp	Analogue systems require more hardware for more performance
	Phase shift	Integrated on chip	Limited bandwidth	Useful technology today and in AAVS1
	True time delay	Full bandwidth	Large, hard to integrate. Harder for low freq.	There are early trials of integrated TTD
Digital		Very flexible Can create many beams	Power and cost high?	Digital better and cheaper over time.
Digital	Frequency Domain		Power and cost high? Requires digitisation and processing resources.	. .

April 2014

MFAA All-Hands

MID-FREQUENCY APERTURE ARRAY TWO Stage beamforming


April 2014

MFAA All-Hands

Similar for AA-low and AA-mid:

- Station level beamforming on all the tiles
- Distributes the clock information for all the tiles
- Station calibration calculations and corrections (using the tile processors)
- Transmits observation beams to the correlator
- Station monitoring and control functions

April 2014

MFAA All-Hands

Output data rate & array performance

- The output data rate defines the performance of the array
- A better measure than "beams" since it considers flexible use of data between bandwidth and direction.
- Front end analogue beamforming restricts areas of sky that can be observed concurrently
- Changing the number of bits/sample for different observation types maximises performance
- Not a problem for the correlator which only "sees" total data rate
- Post-processor needs to interpret blocks of data

Build flexibility into Station processing

AA-mid is **THE** most exciting instrument in SKA2!

It will be, by far, the most capable and technically advanced

We have the opportunity to realise a great design

