Lessons from dipole arrays: what is relevant for dense aperture arrays?

Gianni Bernardi

SKA SA & Rhodes University

Credits/acknowledgements: (Griffin Foster, MWA collaboration, PAPER team, Radio Astronomy Research Group @ SKA SA)

MIDPREP workshop, March 1st 2014

Renaissance of low frequency radio astronomy

Relevant issues at low frequencies

- Wide fields of view: hard to isolate a strong, unresolved point source as a calibrator source;
- Wide fields of view: no single phase solution across the field? Certainly not for long baselines due to the ionosphere;
- Wide fields of view: 3D imaging (computational burden);
- Dipoles often clustered in tiles/stations to increase gain directivity: time an frequency variable station → no such a concept as "observing a calibration source" particularly if the beam forming is analogue;
- Ionospheric modeling required to fix phase corruptions across the field of view (only for long baselines?);
- Correction for dipole projections for each pixel in the image (at each time and frequency) required for full polarimetry;
- Most of the aforementioned effects generate a spatially and time variable PSF: burden on deconvolution;

MWA calibration/imaging: co-addition of warped snapshots

courtesy D. Mitchell

Warped snapshot imaging (see Griffin Foster's talk for an application to PAPER)

- Imaging with dipole arrays is always mosaicing;
- The array can be considered instantaneously co-planar \rightarrow 2D FFT
- Resample to a common reference frame (Healpix) → correction for a ionospheric refraction screen and wide field polarization simultaneously;
- Time integration happens co-adding snapshot images:

 $b \downarrow HPX \uparrow S = [(J \downarrow pix \otimes J \downarrow pixx) \uparrow (J \downarrow pix \otimes J \downarrow pix)] \uparrow -1 (J \downarrow pix \otimes J \downarrow pix \uparrow *) \uparrow (J \downarrow pix \otimes J \downarrow pix) \uparrow *) Sb \downarrow HPX \uparrow S$

• Long integrations are easily parallelizable in time and frequency;

(Ord et al., 2010, PASP, 122, 1353)

Ord et al. 2010

MWA primary beams

There are methods to grid and image the data using different element beam patterns (Bhatnagar 2008, Morales & Matejek 2009, Mitchell, Wayth, GB et al. 2012, Tasse et al. 2013)... knowing the input beam patterns precisely is still a challenge to date!

Keep the element beam stable in time: turn it into a transit instrument

GB et al. 2013

Constraining a beam model with drift scans

GB et al. 2013 (also Pober et al. 2010)

Easier problem for individual, non-tracking dipoles (i.e. PAPER)

0.0

E-W Topocentric Coordinate (x)

Modeling Beam of Dipole + Flaps

Black: response toward Cas A Blue: response toward Cyg A Cvan: response toward Tau A Green: response toward Vir A Red: response toward Sun

40dB zenith to horizon, 60 degree FWI Smooth spatially and vs. frequency

Deconvolution

Deconvolution

• When the complex gains change across the FoV, traditional deconvolution methods (Hogbom, Clark, Cotton-Schwab etc...) no longer apply (they assume a spatially invariant PSF);

Deconvolution

- When the complex gains change across the FoV, traditional deconvolution methods (Hogbom, Clark, Cotton-Schwab etc...) no longer apply (they assume a spatially invariant PSF);
- AW projection (Tasse et al. 2013);
- Fast holographic deconvolution (Sullivan et al. 2013) image based deconvolution;
- Algebraic forward modeling (Bernardi et al. 2011) image based deconvolution;
- All the methods are slow and computationally expensive... are there fast, efficient and accurate ways to deconvolve all sky images (including diffuse emission)?

From dipole arrays to MFAAs

- They share very similar (same?) problems → a lot of what was developed for low frequency arrays will be applicable to MFAAs;
- It is best to optimize the array design based on your science goals... but science and technology should meet;
- Cosmology with MFAAs:
 - very short baselines (to detect large scale si
 - large fields of view;
 - extremely accurate calibration for f
 - no station beamforming, just si stability, no W-term in imp
 - beam constraints from
 - lighter deconvolution

craction;

 $(PAPER) \rightarrow$ accurate beam modeling, beam

maging (or AW projection);

ments of sky sources;

.s with a denser uv-coverage;

- HI spectral line imaging:
 - long baselines;
- Pulsars and transients:
 - digital beamforming + all sky monitoring (<u>forget about problems in imaging and</u> <u>calibration</u>);