Mid-Frequency AA Technology

Andrew Faulkner

AA-MID Science

Science	Detail	MFAA Benefit
Transient radio sky	Fast Radio Bursts, FRBs	Very wide FoV capability Look-back buffer Highly configurable in frequency and beams
History of Hydrogen	Cosmology Galaxy Evolution	Fast survey speed Configurable FoV vs frequency
Pulsars	Search, incl galactic Timing, basic timing Extended study	~1.2-1.4GHz good for searching Galactic plane Many beam capability for timing "Extended time" beams
Magnestism	Origin and evolution of cosmic magnetism	Survey speed

And, other Mid-Frequency Science

EMBRACE demonstrator – SKADS!

- Phase calibration tables good for >6 months
- EMBRACE is very stable!

March 2016

MID-FREQUENCY APERTURE ARRAY

MID-PREP/AAMID

MFAA System design aims

Operation

- Meet performance requirements:
 - Bandwidth Frequency range
 - Sensitivity Precision beams
 - Polarisation Massive data output
- A "software controlled aperture":
 - Stations Appodization
 - Location
- Highly configurable systems
- Precise calibration capability
- Resilient to sub-system failure
- Extendable performance
- Ability to implement new processing options

Implementation

- Minimise equipment in the field
- Very, very low EMI
 - Ideally no digital systems outside processing facility
 - Optical comms links
- Easy maintenance
- Low power
- Low cost
- Simple infrastructure
- Deployable for *very* large contiguous arrays (100's of metre dia)

March 2016

MID-PREP/AAMID

MID-FREQUENCY APERTURE ARRAY

March 2016

MID-PREP/AAMID

Outline Specification...

Parameter	Essential	Desirable	Comments
Frequency – low	450 MHz	<400 MHz	Scientifically the low frequency is for HI at z=3.
Frequency – high	1450 MHz	>1450 MHz	Reach at least HI line; further science at higher frequencies
Polarisations	2-linear 30dB purity	2-linear 40dB purity	Essential to have orthogonal polarisations Purity is post calibration
Sensitivity	10,000m²/K @ 800MHz	10,000m²/K @ 1GHz	Sensitivity may be higher at lower frequencies Sensitivity is at zenith, will reduce with scan angle.
Optical FoV	100deg ²	>±45° from zenith	More FoV (at narrower BW) gives better survey speed and is important for transients
Bandwidth (max)	1000MHz	>1000MHz	Should be capable of having beams of the full bandwidth
Beams*bandwidt h Product	>50GHz	>250GHz	Data rate determines telescope performance. Likely limited by post processing capability.
# of beams (max)	Fill optical FoV	Fill ±45° from zenith	Depends upon bandwidth required. Beams should be completely configurable for BW/Number etc.
Beam precision	<2% error at all freqs	<1% error at all freqs	This requires accurate analogue calibration; good beam prediction sims; ability to "measure" the beam on-line.
Buffer	10 sec	100 sec	Element/tile level buffering, flexibly applied
Configurability	Beams/BW	Station size Station location	Modify processing across the array – new approaches. Station size and location can tune for experiment
larch 2016		MID-P	REP/AAMID MEAA Technology

.. a lot learned from LFAA

	Parameter	Value
MXXXXXXXX PLODODODOD	Frequency range (basic)	50 – 350MHz
	Frequency range (ext.)	50 – 650MHz
- ANTRO ANT ANT ANTROPOLIST	Number of antennas	131,072
	Number of stations	512
	Station diameter	~35m
Antenna Station Station - 256 antennas (hearns sent for processing)	Antennas per station	256
	Antenna type	Log periodic
	Min. Antenna sep.	1.5m
	Inst. bandwidth	300MHz
	Number of beams	Up to 6
	Digitisation	8-bits
Low Frequency AA: 512 Stations Artennas in a random pattern	Beamforming	All-digital
	Beamforming type	Distributed
	Interconnect	40/56GbE
	M.	

March 2016

Contraction of the second

MID-PREP/AAMID

Some LFAA lessons in Phase 1

- Calibration, Calibration...:
 - /ant.: phase & ampl'd
 - "Surface" precision $<\lambda/20$
- Predict station beamshape to ~1% is essential:
 - For normal station and with failed antennas/tiles.
 - Sidelobe knowledge
- >30dB **Polarisation** separation
- Post processing is very expensive in power and money
- **# of Stations** will probably increase to e.g. 1024

- LFAA system architecture important:
 - Calibration, flexibility, unknowns
- "Sea of elements" capability
 - Station size, position, apodisation
- Infrastructure is very expensive
- **RFI** mitigation is *extremely* challenging. Easiest in a single big facility
- **Power** is at a premium. Losses are substantial (linear PSU etc).
- Maintainability is crucial

Antenna options - Dense

Spacing $\lambda/2$ @ ~max. frequency

S₂₂ (Smith chart, after ref. plane correction) simulation measurement 0.6 S_{22} 0.4 oart of 0.2 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.5 0.5 0 real part of S.

March 2016

MID-FREQUENCY APERTURE ARRAY

....chnology

Regular implementation concept

MID-FREQUENCY APERTURE ARRA

Measured (red) vs. Simulation (blue) results of passive reflection in a 16 element array

> Impression of bio-based prototype with coated biofoam[©] cover

March 2016

MID-PREP/AAMID

- Log-periodic antenna
- Random layout
- Spacing λ/2 @ low frequency

Same concept as LFAA

Sparse, irregular array (2)

Example of a sparse irregular configuration

LNA physical implementation on prototype antenna showing LNAs inside the spine tubes.

MID-PREP/AAMID

MFAA Technology

March 2016

MID-FREQUENCY APERTURE ARRAY

March 2016

MID-PREP/AAMID

March 2016

MID-PREP/AAMID

LNAs – choices...

≤30K Rx temp Differential/ single ended

March 2016

MID-PREP/AAMID

Beamforming comparison

MID-FREQUENCY APERTURE ARE

Technology	Antenna signals are:	Pros	Cons
Digital – Frequency Domain	Digitised Channelized in polyphase filter Calibrated by frequency Weighted and summed for beamforming.	Very flexible. Can be accurately calibrated Can readily form many beams with minimal additional processing Can account for many errors.	Channeliser is computationally expensive. May not represent fast transients accurately
Digital – Time domain	Digitised Correct Pass band w/FIR filter Digitally delayed using interpolation Summed for beamforming	Computationally cheap Good for fast transient signals	Calibration techniques not well understood, even if they are possible Each beam requires additional hardware. Cannot necessarily have partial beams to share bandwidth.
Analogue – Time domain	Delayed by programmable periods with delay lines or electronic systems Summed in the analogue domain	Low cost and low power. Reduces digitisation and processing costs Reduces analogue signal transport requirements	Subject to analogue drift Cannot calibrate at antenna level Limits optical FoV Possibly inaccurate station beams Implemention difficult for random arrays
Analogue – Phase shift	Delayed by programmable periods with phase shifting electronics Summed in analogue domain	Cheaper and lower power than other approaches. Reduces digitisation and processing costs Reduce analogue signal transport requirements	Causes beam "squint" with wide B/W Subject to analogue drift Cannot calibrate at the antenna level Limits optical FoV Possibly inaccurate station beams Only implement on regular arrays

Analogue beamforming

Digital control : I2C or SPI

True time delay chip...

March 2016

MID-PREP/AAMID

Tile based analogue beamforming

Digital beamforming

LFAA system: 16 input x 2 pols ADCs 8-12 bits Buffer memory Network connection Beamforming processing Calibration

March 2016

MID-FREQUENCY APERTURE ARRAY

MID-PREP/AAMID

March 2016

MID-PREP/AAMID

March 2016

MID-PREP/AAMID

System architecture (all-digital B/F)

March 2016

MID-PREP/AAMID

System architecture (tile level analogue B/F)

March 2016

MID-PREP/AAMID

Processing Facility design

March 2016

MID-PREP/AAMID

MID-PREP/AAMID

Proposed requirements of MFAA TPM

Parameter	Essential	Desirable	Comments
Number of input antennas or tiles	128	256	The capability to process a large number of antennas or tiles of antennas that have been analogue beamformed is essential.
# of signal channels	256	512	2-Polarisations per signal
Antenna signal input	8-colour analogue mux. optical	16-colour analogue mux. optical	Analogue fibre ensures min. digital electronics at the antenna. Multiplexing reduces the large number of fibres into the processing facility. Also ensures that all the signals can be entered into the MTPM.
Frequency – low	450MHz	400MHz	Scientifically the low frequency requirement is for HI at z=2.5. Functionally, a sensible cross over frequency with which LFAA operates to 450-500MHz at high sensitivity.
Frequency – high	1450 MHz	>1450 MHz	 Essential to cover the rest HI line frequency of 1421MHz. Also: [1] Transients, specifically FRB detection [2] Galactic pulsar search & timing [3] History of HI to z=2.5. Desirable to reach higher frequencies e.g. 2000MHz: OH observation at ~1700MHz Precision timing of pulsars
Bandwidth (inst.)	1000MHz	>1000MHz	It is essential to be able to form a full bandwidth beams across the HI observing frequencies.
Number of bands	1	1 or 2	The band has to cover the 1GHz from 450MHz to 1450MHz. A 2 ¹¹⁴ band using a higher Nyquist zone could be used for extended freq. range – ideally all covered in one band.

March 2016

Possible configuration

March 2016

MID-PREP/AAMID

Flexibility e.g. Appodisation

- Sea-of-antennas in core
- Shared antenna usage
- Change/move station size

Credit: Keith Grainge

- Flexible calibration schemes
- Alternative processing structure: Correlation, Post proc

March 2016

VID-FREQUENCY APERTURE ARRA

MID-PREP/AAMID

Construction suggestion for MFAA

March 2016

MID-PREP/AAMID

MCCS: Application Runtime Environment

MID-FREQUENCY APERTURE ARRAY

MID-PREP/AAMID

MID-FREQUENCY APERTURE ARRAY

March 2016

MID-PREP/AAMID

Sample array designs...

	Sparse	Dense
Frequency range	400MHz – 1.4GHz (2.0GHz)	450MHz – 1.4GHz
# of stations	256	256
Diameter of station	60.5m	42.3m
T _{sys}	35	35
Beamforming	All digital	RF for 16 elements Digital thereafter
# Digital channels (2-pol)	16 million	~3 million
Optical FoV	±45 deg from zenith	~200 sq deg
Antennas/station	32,000	90,000
Antenna spacing	300 mm	125 mm
Total # of antennas	8 million	23 million

Performance estimates

March 2016

MID-PREP/AAMID

A practical focus...?

- It is difficult to afford extreme survey speed soon:
 - Massive data rate from stations
 - Huge correlation
 - Very large post processing
- Consider performance, cost and benefits ... **SO:**

AA Cost < Dish

"Surface" controlled and known

AA processing options

Architecture:

Array type:

Beamforming:

Antenna type:

Analogue Sig. transport:

Processing location:

Station level --- Overall array

Regular dense --- Irregular sparse

Tile level analogue --- All-digital

Planar --- 3-D

Analogue fibre --- Copper

Distributed ---- Centralised

