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Why irregular sparse using LPD?

e Wide bandwidth LPD antenna elements
e Good matching can be achieved over the band
e |[rregularity ensures grating lobes are smeared out

e More sensitivity per antenna (gain and size) than dense at all

fregs - especially at low frequency

p
~33% of the number of antennas of a dense array

Reduced # of antennas: makes “All-digital” realistic ...
- Y,

e LPDs are highly predictable (e.g. instrumental wideband antenas)
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First prototype.
Differential feeding
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Second prototype
Single ended feed
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Third prototype
Single ended feed
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Current design LPD

Dipoles 6
Geometric ratio (1) 0.59
Width of the slot (o = Vi) 0.76
Quter aperture of the teeth (a) 62.5°
Inner aperture of the teeth () 3
Separation between arms {{) 26°
Scaling of teeth width 0.7
Antenna height (h,) 30cm
Distance from the last dipole to the GND

5c¢m
plane (hy)
Bowtie bottom dipole () 71cm
Antenna width (w,) 37.5¢m
Log-periodic progression width {w,) 28.5cm
Bowtie dipole angle (0) 45°
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LNA feed - Differential
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LNA feed — single ended

Single ended
LNA
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- Simulations of single ended feeds
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Single ended LNA implementation

MID-FREGUENCY APERTURE ARRAY

Feed from
“other” arm

LNASs inside
the spine
tubes.

All local electronics to be built into spine:
shielded and environmentally sound
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Patterns at 1 GHz for each coaxial configurations.
left: E plane and right: H plane.
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ﬂ 16-element model
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Beamshapes

MID-FREGUENCY APERTURE ARRAY

(a) (b) (@) (9'03)

() @ © (d)

Simulated and experimental E plane (left) and H plane (right)
radiation patterns at:
a) 300 MHz, b) 700 MHz, ¢) 1100 MHz and d) 1450 MHz.
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MFAA Station
Simulation
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Development: small mass production

e The next step for 100’s — 1000’s antennas

e Fundamentally low cost

— sheet metal or wire bending

— A couple of small mouldings

e |ntrinsically environmentally protected
e Electronicsin the field shielded in spines

e Optically linked for multiple antenna muxed

{ Contract placed with DfM experts... }
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Demonstrator at Lord’s Bridge

MID-FREQUENCY APERTURE ARRAY
# antennas 64 -128
Processing all-digital
o Processing Cabin
TPMs 4-8 modified LFAA 8 mterfet /F
Comms RFoF
TPMs ™
Freq range 400 - 1450MHz Controller
1
Station .
Fibre cable > <—|_> MCCS
box @‘_l—» ~ ] Server
Power Fi!ore ﬂ‘l g
splicing QU’)
i L >
| =
4 : i
. t Signal data
RFI shield . Recorder
(server)
Master Clock I
Internet I/F
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- Vvision

Beams all over the sky...
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WA

Parameter

Frequency — low

Polarisations

Sensitivity

Optical FoV

h
Product

Beam precision

Buffer

Configurability

Station location Station size and location can tune for experiment

Frequency — high

Bandwidth (max)

Beams*bandwidt

# of beams (max)

Essential

450 MHz
1450 MHz

2-linear
30dB purity

10,000m?/K
@ 800MHz

1000MHz

>50GHz

<2% error
at all freqgs

100 sec

Beams/BW

Qutline Specification... with LPD

Desirable | Comments

<400 MHz
>1450 MHz

2-linear
40dB purity

10,000m?2/K
@ 1GHz

>+45° from

zenith
>1000MHz

>250GHz

Fill +45° from

zenith

<1% error at all

fregs
1000 sec

Station size

Scientifically the low frequency is for HI at z=3.
Reach at least Hl line; further science at higher frequencies

Essential to have orthogonal polarisations
Purity is post calibration

Sensitivity may be higher at lower frequencies
Sensitivity is at zenith, will reduce with scan angle.

More FoV (at narrower BW) gives better survey speed and
is important for transients

Should be capable of having beams of the full bandwidth

Data rate determines telescope performance. Likely
limited by post processing capability.

Depends upon bandwidth required. Beams should be
completely configurable for BW/Number etc.

This requires accurate analogue calibration; good beam
prediction sims; ability to “measure” the beam on-line.

Element/tile level buffering, flexibly applied, at some B/W

Modify processing across the array — new approaches.
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Possible configuration
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Construction suggestion for MFAA
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Sample array designs...

MID-FREGUENCY APERTURE ARRAY

Frequency range 400MHz — 1.4GHz (2.0GHz) 450MHz — 1.4GHz
# of stations 256 256
Diameter of station 60.5m 42.3m
Toys 35 35
Beamforming All digital RF for 16 elements
Digital thereafter
# Digital channels (2-pol) 16 million ~3 million
Optical FoV +45 deg from zenith ~200 sq deg
Antennas/station 32,000 90,000
Antenna spacing 300 mm 125 mm
Total # of antennas 8 million 23 million
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Sensitivity
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The A of the LPD is: "‘?\2/2 — where sparse enough.
Max is the physical area typ. A%2/4 (dense regime)
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Survey speed

Survey speed and Number of Beams
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Data rates

MID-FREGUENCY APERTURE ARRAY

Data rate per 10MHz channel
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Power and cost estimates using sparse...

MID-FREQUENCY APERTURE ARRAY

Quantities Power Cost

Each Total Each Total
223 Antennas 213 Ant/station Antennas 1W 8 MW €30 €240M
21 TPMs 210 Station proc. | TPM 150 W 10 MW €2500 €160M
210 stations 219 Racks SPM 1 kW 1MW €10,000 €10M
27 Ant./TPM 2% TPMs/rack Switches 250 W 0.5 MW €5000 €10M
2° Fibres/TPM 22 Ant./fibre Servers 1 kW 1 MW €5000 €5M
2!1 Data switches = 210 Servers .(Ii-cn)(t;IS% losses) 25 MW (ITI\CI-F;(,Z‘/;:E; €550M

8million antennas
1024 racks
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2-stage beamforming

Station beams

Central ‘perfect’ beam

Tile beam
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Tile Beamforming

Incoming signal
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