Regular Dense Dipole Arrays

J. Gilmore & D.B. Davidson

Stellenbosch University

March 2016

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

5900

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
Outline				

1 Introduction and Design Overview

2 Dual-Polarized DDA Design

3 Common-Mode Suppressing Feed

4 Implementation and Results

Design Overview	Dual-Pol DDA	Feed	Results
-----------------	--------------	------	---------

Introduction and Design Overview I

- Array of overlapping dipole elements placed above a ground plane
- Elements spaced $< \frac{\lambda}{2}$ apart at *all* in-band frequencies.
 - Grating lobes are avoided at all in-band frequencies
 - Not a lot of room for stored energy around elements
 - \rightarrow impedance is stabilized over wider bandwidth
- Capacitive coupling between elements
 - Compensates for the inductance in ground plane and elements themselves
 - \rightarrow reduces reactive part of Z_0 over wider bandwidth

Introduction and Design Overview II

Active reflection coefficient at broadside for 2 parameter sets

(Resonances are due to common-mode currents. Path length between elements determine the frequency at which they occur.)

Outline

2 Dual-Polarized DDA Design

	0	
	())/	
Coign	00	

Dual-Pol DDA

Feed

Result

Conclusion and Future work

Dual Polarization Overview I

- We want a dual-polarized system...
- A second, orthogonal layer was added
- Elements are placed in parallel pairs
 - $\bullet\,$ Lowers the 300 Ω characteristic impedance to 150 $\Omega\,$
 - Halves required number of receiver chains (Huge cost saving...)
 - <u>Trade-off</u> effectively beamforming element pair to zenith

 \rightarrow Single element beamwidth is wide enough that this isn't really a problem.

イロト イポト イヨト イヨト

Des	ign	U	V	er	VI	e	W

Dual-Pol DDA

Feed

Result

Conclusion and Future work

Dual Polarization Simulation Results I

Active reflection coefficient at broadside

More path lengths between elements \rightarrow more resonances

イロト イポト イヨト イヨト

Feed

Result

Dual Polarization Simulation Results II

Active reflection coefficient for various scan angles along E-plane, with a <u>co</u>-polarized incoming wave-front.

Dual Polarization Simulation Results III

Active reflection coefficient for various scan angles along E-plane, with a <u>cross</u>-polarized incoming wave-front.

Feed

Result

Dual Polarization Simulation Results IV

Active reflection coefficient for various scan angles along H-plane, with a <u>co</u>-polarized incoming wave-front.

Dual Polarization Simulation Results V

Active reflection coefficient for various scan angles along H-plane, with a <u>cross</u>-polarized incoming wave-front.

Outline

1 Introduction and Design Overview

3 Common-Mode Suppressing Feed

4 Implementation and Results

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
Feed Design I				

- Results look encouraging...but...there is an in-band resonance
- Caused by 360° current loops between neighbouring differential ports
- Frequency at which resonance occur will change with scan angle and length of feed line

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
Feed Design I	I			

- We designed a feed to suppress the common-mode currents
- $\bullet\,$ Design consists of $2\times$ wide-band microstrip-slotline transitions on either side of a PCB

• The EM-fields induced by the common-mode currents are cancelled out, and the EM-fields induced by the differential-mode currents are still allowed to propagate.

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
Feed Design	ш			

Manufactured PCB:

- Board has a height of 75mm $\left(\frac{\lambda_0}{4}\right)$ and a width of 35mm
- Will be able to provide structural support between array and ground plane.

・ロト ・ 同ト ・ ヨト

- < ∃ →

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
- - - - - - - - - -	N /			

Feed Design IV

Outline

1 Introduction and Design Overview

2 Dual-Polarized DDA Design

3 Common-Mode Suppressing Feed

4 Implementation and Results

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work

Implementation Overview I

$10\times10\times2$ Prototype DDA was built and measured

< 日 > < 四 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < < 臣 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Design Overview

Dual-Pol DDA

Feed

Results

Conclusion and Future work

Implementation Overview II

Ξ

Measurement Results I

Embedded gain pattern (E-plane)

Outline

(5) Conclusion and Future work

《曰》 《圖》 《臣》 《臣》

三

900

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
Conclusion				

- A dual-polarized DDA was designed, and a 1m² prototype built and tested
 - A wide bandwidth over a wide scan-angle
 - $\bullet\,$ Smooth embedded gain pattern \to digital beamforming will be much simpler
 - Good cross-polarization performance was shown
- A feed that suppresses the common-mode resonances associated with connected antenna arrays were designed, built and tested
 - $\,$ A CMRR of > 30 dB across all in-band frequencies were demonstrated.

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
Future Work				

- Optimization of dual-polarized DDA parameter set
- Second prototype tile using optimized parameter set and more fed elements.
- 1-bit beamformer implementation on second prototype.
- Integration with LNA and LNA placement study
- Noise measurements with integrated LNA.

Design Overview	Dual-Pol DDA	Feed	Results	Conclusion and Future work
Acknowledg	gements			

Thank you to our sponsors!

This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme MIDPREP under Grant Agreement PIRSES-GA-2013-612599

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

