

SKA-AAMID

System Design

André Gunst (ASTRON)

SKA-TSM is supported by subsidies from the The Northern Netherlands Provinces Alliance (SNN), Koers Noord and the Province of Drenthe.

8 March 2016

- AAMID
- MFAA
- Target requirements
- Trade-off
- Trade-off
- More trade-offs
- Even more trade-offs
- The last trade-off: AAMID
- Conclusions

MFAA Architectural Concepts

- Analog tile digital tile
- Analog beamforming all digital
- Centralized distributed architecture
- Sparse/irregular dense/regular

Target AAMID Requirements

Parameter	Requirement	Unit
Frequency range	450 - 1450	MHz
Best effort for frequency from	400	MHz
Polarisation	2	
Instantaneous bandwidth	1000	MHz
Survey speed	>1e10	sq. deg m^4/K^2
A/T target	> 10,000	m^2/K
Optical FoV @ 1 GHz	> 160	sq. deg
Processed FoV @ 1 GHz (500 MHz bandwidth)	> 100	sq. deg
Bandwidth beam product @ 1 GHz	500 * 100	MHz sq. deg
Buffer capability (500 MHz bandwidth)	> 10 - 40	seconds
Trade-off flexibility	bandwidth for FoV	
Number of TABs	10,000	
Station size	Flexible	
Scan angle from zenith	from - 60 to 60	deg
Upgradeable to optical FoV @ 1 GHz of	> 350	sq. deg

- Costs are identical
- Performance at zenith, unless otherwise stated

• Tiles >, costs

- Dense/regular designs tailored such that
 - Optical FoV matches the processed FoV
 - Drives cost down
- Receiver noise temperature target reduced from 50 K to 30 K

• Tiles from $0.5 - 2 \text{ m}^2$

8 March 2016

Processed Field of View

Survey Speed

Optical Field of View (the Wow ...)

How to obtain the optical FoV ...

- SKA Phase 2 is still "far" away > 2025
- Technology progress keeps on going
 - Data transport technologies (RFoF with multiple signals)
 - Digital tile

— ..

8 March 2016

- Build upgradeable tiles
 - Composed from smaller basic "sub-tiles"
 - Bypass analog beamformer stages
 - Prepare transport links for extension

How to get more – sparse?

How to get even more: more Forward Gain

- Warning: Integral of gain over all scan angles is constant
- Air pillow effect
- Gain goes down > $\cos^2(\theta)$

(θ is scan angle from zenith)

IDFREGUENCY APERTURE ARRAY Sparse, with more forward gain

MIDFREQUENCY APERTURE ARRAY Features of sparse

- Excellent A/T for low frequencies in zenith
- A/T goes with f⁻² within the band
- Survey speed goes with f⁻⁶ within the band
- A/T drops > $\cos^2(\theta)$
- Individual antenna beam patterns matter
- Beam model less smooth as dense
- Beam model less predictable as dense
- Grating lobes within the band
- In case of all digital: costs >>

• Smirnov during Aveiro meeting in 2015:

"It's all about the primary beam" and "Going from 3M to 5M has been a PB story" (about HDR)

Trade-Off

Kevin Maney

in 2025

8 March 2016

MIDFREGULENCY APERTURE ARRAY Current Trade-off Status

FoV Profiles

Compensated for reality ...

R

- Assumptions:
 - Processed FoV fixed
 - A/T fixed

Number of MFAA Stations Trade-off

- Large stations
 - small station beams
 - more digital beams required to synthesize the FoV
 - smaller amount of stations to correlate
- Small stations
 - large station beams
 - less digital beams required to synthesize the FoV
 - more stations to correlate
- Interesting fact
 - total data rate from MFAA to correlator is constant

Relations as function of Ns

- MFAA
 - Filterbank: constant
 - Beamformer: ~ Ns⁻¹
- Central Signal Processor
 - Filterbank: constant
 - Correlator: ~ Ns
- Science Data Processor (only driving ones)
 - Gridder: ~ Ns²
 - iFFT: Ns

Exa Flops is a lot, but ...

- SKA Phase 2 is still "far" away > 2025
- Technology progress keeps on going
 - Advances in digital processing (more Moore please)
 - Algorithm development in the science data processing

- Preferably equalize optical and processed FoV
- AAMID offers lots of flexibility
- Number of stations driven by processing costs

Contact details gunst@astron.nl

8 March 2016