

NWU LNA's for MFAA

P.P. Krüger, B. Visser

NWU background

High-energy astrophysics Gamma-ray astronomy H.E.S.S. & CTA Cosmic-ray research Neutron monitors

NWU background

Neutron monitors Need room-temperature, pulse (broadband) LNAs

Gamma-ray telescope Need 1000x room-temperature, pulse (broadband) LNAs

MFAA LNA requirements

- Broadband: 0.4 1.5 GHz
- Low noise: <30 K
- Little power consumption: <50 mW
- Inexpensive
- Fully differential

Commercial HEMT: ATF 35143:

- Broadband: 0.5 1.5 GHz
- Low noise: <30 K
 - o Tmin < 14K below 1.5 GHz!</p>
- Little power consumption: <100 mW (for 30 dB gain)
- Inexpensive
- Fully differential

Commercial HEMT: ATF 35143:

- Broadband: 0.5 1.5 GHz
- Low noise: <30 K
 - o Tmin < 14K below 1.5 GHz!</p>
- Little power consumption: <100 mW (for 30 dB gain)
 - **20mW / HEMT**:
 - o 2 HEMT = 30dB gain & 40 mW
- Inexpensive
 - **<\$1 / HEMT**
- Fully differential
 - 4 HEMTS

The Problem:

Very low Tmin only at the optimum impedance impedance, Zopt

Zopt is frequency dependent

2 proposed solutions:

- Multipath amplifier
 - Low-loss matching technique to match antenna (Zant) to the optimum impedance (Zopt)
- Modify antenna
 - So that the antenna impedance is close to the optimum impedance, Zant=Zopt

1. Multipath amplifiers

Difficult to match Zant to Zopt over broadband with low loss:

Much easier to match Zant to several amplifier's Zopt:

Multipath amplifier: Effect of the number of paths

Matching ATF35143's Zopt to 60 Ohm from 0.35 - 1.5 GHz:

4-path LNA demonstrator

Fully Differential LNA

- + Differential Input: 120 Ω
- + Bandwidth: 0.35 1.5 GHz
- + Measured noise temperature: 20-25K
- + Power: 400 mW (16x ATF35143)

Manchester ORA

2-path LNA demonstrator

Single-ended LNA

- + Input: 50 Ω (S₁₁ < -10dB)
- + Bandwidth: 0.8 2 GHz
- + Measured NT: <30 K @ room temp.
- + Power: 60 mW
- + 4x ATF35143

2. Design antenna having Z_{opt}

Antenna designed to have impedance close to Z_{opt}

Only 1 amplification path::

Reduce semiconductor cost

Reduce power consumption

Simpler

Apperture array example

- Construction
 - Copper wires and pads
 - Thin PCBs with LNA
 - Ground plane

Based on Manchester's Octal Ring Array

Apperture array example 1

12 cm between elements
 (Grating effect >45 degrees @ 1.5GHz)

Apperture array example 1

- 0.5 1.5 GHz
- Noise Temp <30 K (LNA & antenna loss)
- 100mW (for 30 dB gain) / LNA
- Dual-polarised

Apperture array example 2

> 12 cm between elements (Grating effect >45 degrees @ 1.5GHz)

Based on ASTRON's design

Side view

Top view

Receiver Noise Temperature (Kelvin)

Apperture array example 2

26

24

22

Noise Temperature (Kelvin) 17 01 81 05

> 12 10

> > 8

T_min

0.6

0.8

1.0

Frequency (GHz)

1.2

T zenith

Receiver Noise Temperature (Kelvin)

Apperture array example 2

- T_{rec} <30 K (Mostly <20K)

 0.5 - 1.5 GHz
 0-45° Zenith
- <50mW / LNA (for 25 dB gain)
- Single ended

What about S₁₁?

Not important, but ...

Quite easy to design HEMT LNA to have Zin close to Zopt*.

A good match to Zopt* then also give a good match to Zin

Conclusion

Using commercial HEMTs for LNAs may be a good and easy solution for MFAA.

Requires impedance matching:

- By using a multipath amplifier
 - Advantage: Seperate LNA & antenna design
- By matching the antenna to the HEMT
 - Advantage:
 - Lower semiconductor cost
 - Lower power consumption
 - Simpler

Apperture array example 1

Parallel polarised

Receiver Noise Temperature (Kelvin)

45°

50

315°

60

0°

0°

315°

Perpendicular polarised

Receiver temperature

Load antenna with Z^*_{opt} (at each LNA)

Simulated incoming wave: P_{in} = power per array element

Receiver temperature

Load antenna with Z^*_{opt} (at each LNA)

$$T_{rec} = T_{min} + 2T_{n}(P_{in}/P_{zopt}-1) + T_{0}P_{loss}/P_{in}$$

$$T_{0} - \text{ambient temperature}$$

$$T_{min} - \text{amplifier minimum noise temperature}$$

$$T_{n} - \text{amplifier mismatch noise temperature } (\approx T_{min})$$

$$T_{n} = 2 R_{n} G_{opt} T_{0} (G_{opt} - \text{optimum conductance, } R_{n} \text{ noise resistance})$$

$$T_{rec} / A_{element} = T_{LNA+antenna} / A_{eff}$$

Amplifier noise measurement: Procedure

3 Output power measurements

- P_s: Input shorted
- P[°].: Input open
- $P_{f}^{\tilde{}}$: Input terminated at room temperature T_{R}

Y-factor: $Y \equiv 2P_t / (P_s + P_o)$

Correction factor: $\alpha = 1 + S_{11}^2 + 2Re(S_{11}) (P_s - P_o) / (P_s + P_o)$

 $\alpha \approx 1$ when S₁₁ small.

LNA Noise temperature: **T**_{Ina}

Amplifier noise measurement: Simulated example

