Galaxy Evolution probed by Radio Continuum emission

Kim McAlpine

Cosmic SFD History

SFRD uncertain due to dust corrections at z>2 Peak epoch of SFR not well constrained Fig. from Madua & Dickenson 2014

SFR via the FIRC

FIR is generated by dust reprocessing of UV light from young stars

Radio is synchrotron emission from SNe remnants

Holds over -4 orders of magnitude

Irrespective of galaxy type (eg Garrett et al 2002, Beswick et al 2008)

Holds out to $z \sim 1$, and possibly $z \sim 2$. (eg Mao et al 2011, Thomson et al 2014)

Radio : Dust-free SFR

Mapping SFH of universe is a major goal of SKA and pathfinders

Radio is sensitive to <u>total</u> star formation

• obscured + unobscured

Radio has improved resolution, compared to FIR

Avoids being confusion noise limited.

The RLF of Star forming galaxies as probed by the SKA1 ultra deep tier. Figure from Jarvis et al. 2014

The Evolution of the MS

Fig. from Johnston et al. 2015

How does the MS evolve beyond z>2 Is there a turnover ?

Combine SKA+ALMA for gas depletion timescales Downsizing, why do the most massive systems stop forming stars at earlier epochs ?

The Evolution of the MS

Simulations fail to reproduce MS evolution

The Evolution of the MS

Difference between Radio flux for galaxies which lie on the galaxy main sequence

Dashed: Whittaker et al 2012 Solid : Johnston et al 2014

Fig. from Jarvis et al. 2014

The SF/AGN link

Theory suggests AGN 'feedback'

Exponential cut-off at bright end of LF

Most Massive Galaxies are 'red and dead' ellipticals

Two Modes of AGN accretion

Hot mode

 $L/L_{Edd} \le 0.01$

Low Excitation Radio Galaxy

Cold mode

 $L/L_{Edd} \ge 0.01$

High Excitation Radio Galaxy QSO & Seyferts : Type 1 & 2

Radiative vs Jet Feedback

AGN driven winds

- thermal heating of gas
- radiation pressure on dust

Observed Outflows

- > 1000 km/s , >100 M_{\odot} year⁻¹
- prevalence, longevity ? $> 10^{45}$ erg/s

Jets inflate bubbles in IGM/ ICM

Fabian et al., 2006

The significance of mergers?

Mergers \rightarrow

- Enhanced SF
- no-enhancement for typical AGN

AGN growth via secular processes Mergers NB only at highest Lum

AGN -SF co-evolution

Lower power AGN exists in Disks

AGN and SF fed by secular processes

Image credit:NASA, ESA, K. Kuntz (JHU), F. Bresolin (University of Hawaii), J. Trauger (Jet Propulsion Lab), J. Mould (NOAO), Y.-H. Chu (University of Illinois, Urbana), and STScI, Canada-France-Hawaii Telescope/J.-C. Cuillandre/Coelum, G. Jacoby, B. Bohannan, M. Hanna/ NOAO/AURA/NSF mass threshold ?

formed in major mergers

Image credit: NASA, ESA, the Hubble Heritage Team (STScI/ AURA)-ESA/Hubble Collaboration K. Noll (STScI)

- SF quenched post merger ?
- Jet mode feedback
- $M_{\rm bh} M_*$ relation pre-built ?

Radio surveys and the SKA

Star-formation (FIRC) (60%)
Hot and Cold mode Radio-Loud AGN (15%)
Radio-Quiet AGN (25%)

Advantages of radio λ

High resolution < 1"
Obscuration free,

Radio emission in RQ AGN

100

0

mas)

g

%e1

8

Radio emission AGN/SF?

- AGN cores, mini-jets at low-z
- RQ AGN and SF similar evolution and LF
- Radio higher than expected from SF alone (White et al, in prep)

White et al, in prep

SKA Resolution

• AGN cores & inner jets $\ll 1 \text{ kpc}/0.12''$

• Nuclear/Disk SF $\gg 1 \text{ kpc}/0.12''$

• Large scale jets in RL AGN $\gg 10 \text{ kpc}/1.2''$

• SF regions << 200 pc/0.03"

SKA decompose AGN/SF in individual galaxies,

	SKA_1	SKA_2
	(200 km)	(1000 km)
700 MHz	0.6''	0.1''
10 GHz	0.04"	0.007''

Biggs, Younger and Ivison, 2010

Wide Survey 5 microJy

Sample Variance & Wide Area Surveys

Wide areas to find rarer high mass systems, > 100 sq degrees driven by z<1

z>1 : ~ 10's of sq degrees, also limited by ancillary data Higher resolution (<0.03 arcsec) more valuable than area Study individual SF regions (200 pc) scales at high redshifts JWST resolution over cosmologically significant volumes

Ancillary Data

Deep fields

- JWST
- LSST deep drilling
- XMM-Newton, Chandra

Wide fields

- Euclid } SED fitting,
- LSST Photo-z's

 \rightarrow

• e-Rosita

Detect AGN, shallower than SKA

HATLAS_J085358.8+002100, z= 0.03, chi2 = 4.15 HATLAS_J085358.8+002100, z= 0.03, chi2 = 4.15 HATLAS_J085358.8+002100, z= 0.03, chi2 = 4.15 0.1 0.1 0.1 1.0 0.1 1.0 1.0Rest Wavelength / µm

- Spectroscopy
 - 4MOST (VISTA)
 - MOONs (VLT)
 - redshifts, emission lines

Summary

SKA has potential to solve many challenging questions in galaxy evolution

However larger areas (>100 - square degrees) not as essential as resolution and image fidelity at high redshift. Also NB ancillary datasets and multifrequency observations and gas dynamics (HI +CO)

At z<1.0 larger areas required to sample all environments

Survey 1 microJy

Survey 100 nJy

