AST (RON Netherlands Institute for Radio Astronomy

Vivaldi arrays 'Towards SKA 2025'

Mark Ruiter (Ruiter@astron.nl) ASTRON AAMID workpackage leader 2016/03/06

Outline

Design team ASTRON AAMID frontend workpackage AST(RON

- Michel Arts
- David Prinsloo
- Robert van den Horn
- Raymond van den Brink
- Erik van der Wal
- Martijn Brethouwer
- Lesley Goudbeek
- Albert van der Duin
- Sieds Damstra

Antenna researcher Antenna engineer

Mechanical engineer

- RF system specialist RF designer
- RF designer / photonics

Microcontroller engineer Hardware/Software engineer

Funding secure for 2016 - 2018

AST(RON

provincie Dremhe

Technological goals towards 2025

Towards SKA 2025

Tile requirements (Working assumptions)

Requirement	Requirement	Unit	
Frequency Range	450 - 1450	MHz	
Optical FOV	> 100	Sq. Deg	BIC
Area	2000	M ²	
Flagged data during observation	< 5	%	AST
T receiver	40 (2016)	K (30K in 2025)	
Instantaneous RF bandwidth	500	MHz	SQUARE KILO Protoinci
Power	50	W/M ² Goal 2025	<u>د م</u>
Cost	1000	€ Goal 2025	
Polarization	2	Full stokes	
Analog Beams	2	Per tile	

A station

AAMID – 2016 prototype

RF block diagram (for 1 pol., 1 beam) **AST**(RON BF 16x X-pol 4:1 2:1 4:1 BF ADC Coax AST(RON SKA AFRICA provincie Dremhe 🔊 SNN • \diamond D D D D \diamond \diamond \bigcirc

Design for Manufacturing towards SKA

- Keep it simple!
- Design for the complete system
- Take complete lifecycle into account from cradle to the grave
- Due to the large numbers; every penny/cent counts
- Buy parts / Components of the shelf (COTS)
- Design For Manufacture and Assembly
- NRE is divided by the millions of elements

Example; LNA module & Antenna

Cost reductions achieved:

- Low cost PCB material
- Small size
- Short manufacturing time
- Expect very high yield
- Relaxed tolerances
- COTS selection
- SATA cable
- 40% thinner plate
- Very simple connection method
- Short assembly time
- Suitable for Mass production

AST(RON

AST(RON

provincie Drenthe

Cost assumptions

- EMBRACE is backed up by quotes
- Current concept 2016 is backed up by quotes
- High cost components estimated from EMBRACE / APERTIF volumes

Higher volume ==> cheaper manufacturing process Machine cost of 200.000 euro divided by 45e6 = 0.45 cent/part Same holds for NRE

- Mechanics = material. cost/kg x weight + manufact. cost
- Electronics = comp. cost + 10 % manufact. Cost
- Profit margins not taken into account.

Cost areas:

- Mechanics
- Electronics
- Infrastructure
- Deployment

= tile + frame + cover

- = PCB boards + components
- = cable infrastructure
- Tile assembly + Testing + Ground Flattening

Total tile cost

Electronic cost per square meter

Hardware – Electronics

- IC integration
- Parts reduction
- Module size reduction
- 3D-MID
- Optimize manufacturing
- Thermode soldering

Hardware - Mechanics

Mechanical tile 2020 cost element groundplane ■ support AST(RON Element cost frame € 3.00 Cover € 2.50 SKA AFRICA provincie Dremhe € 2.00 SNN € 1.50 € 1.00 € 0.50 € 0.00 Embrace 2016 2020 2025

3rd MIDPREP/AAMID workshop 2016, SAAO, Cape Town

Cost towards SKA 2025

3rd MIDPREP/AAMID workshop 2016, SAAO, Cape Town

Power assumptions

Nr of elements per m2	128	2 pols
LNA module	132	mW
BF board	627	mW
Quad Board	452	mW
Center Board	212	mW

Power conversion efficiency

80 %

AST(RON

provincie Dremhe

SNN SNN

3rd MIDPREP/AAMID workshop 2016, SAAO, Cape Town

Tile power consumption W/m² 2016 tile

Tile power consumption W/m² 2025 tile

AAMID tile power consumption (Watt / m²)

AST(RON

Working with great team to achieve our goals:

- Performance increase over frequency and scanangle
- TRL level increase by demonstrating working tiles in the Karoo
- On track for 1000 euro per square meter goal.
- Power consumption of 50W per square meter is feasible!

We can do this, and make discoveries happen!

AST(RON

provincie Drenthe

28m2 array

RF tile block diagram (versimpelen) + boards to be build

Tile to backend