Road towards SKA2 and Mid Frequency Science

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

André van Es/Jeff Wagg SKAO AAMID Workshop: March 7th 2016

Road towards SKA2

 Overview of SKA project timeline André van Es: SKAO EPM: MFAA/SADT

 Mid-frequency science with the SKA Jeff Wagg: SKAO Project Scientist

Past 1991-2012 (Concept - SKAO)

Past 2013 - 2014 RfP

Present

Milestones not yet achieved

Present Status of SKA

- PDR (including Delta-PDR) for all Elements in SKA1
- SRR for AIP program almost completed
- SKA System Review end of March
- Dish down-select completed
- Detailed Design work in all consortia is ongoing
- Negotiations for IGO are in process

SKA1 + SKA 2 (2018 - 2030)

Exploring the Universe with the world's largest radio telescope

Andrea Casson, August 2015

Important for SKA2

- Focus on SKA1, as successful operation of these two instruments will be important for SKA2
- Learn from SKA1, lessons from SKA1 will be essential for the success of SKA2:
 - Science Process
 - Project process
 - Element Model
 - Procurement
 - SKA Organisation
- SKA2 is planned to follow the full system engineering cycle

Mid-frequency science with the SKA

Jeff Wagg SKAO UK

Robert Braun, Tyler Bourke, Evan Keane MFAA all-hands meeting, Cape Town March 7, 2016

Overview of the SKA

• Update on recent SKAO science activities

• SKA1 high priority science goals

• mid-frequency science with the full SKA

Update on SKAO science activities

- August, 2015: "SKA Key Science Workshop", Stockholm, Sweden
 - more than 130 participants
 - Begin collaborations that may evolve into future KSP teams
 - Generic surveys with SKA1?
- October, 2015: Level 0 requirements published
 - Scientific desires for the instrument
 - NOT requirements for consortia, design is based on the Level 1s
- October, 2015: Observing bands: scientific context document
 - Frequency ranges required for SKA1 science objectives

Update on SKAO science activities

- December, 2015: update to Level 1 requirements
 - post-rebaselining requirements
 - Implementation of accepted ECPs

- December, 2015: baselining of station positions for SKA1-LOW
 - Positions defined in 'V4A' calibration memo
 - Calibration risks deemed to be sufficiently low to proceed for environmental site surveys
 - Further work (ongoing) related to station definition

• Upcoming: • System review, end of March

- New project scientist to replace Jimi Green -> Parkes
- "SKA2016: Science for the SKA Generation", Goa, India, November 7 – 11th
- SKA workshop(s) to develop SKA2 science case in 2017 (TBC)

Overview of SKA headline science (not in order of priority)

- 1) Pulsar surveys and timing
 - Study of gravitational waves!
- 2) The Cradle of Life & Astrobiology
 - How do solar systems form and where could life emerge?
- 3) Galaxy Evolution and Cosmology
 - How do galaxies get their gas and form stars?
- 4) Cosmic magnetic fields
 - When did ordered magnetic fields in galaxies form?
- 5) Cosmic Dawn and the Epoch of Reionization
 - When did the first galaxies form and begin to reionize the Universe?
- 6) Radio transients and *Exploration of the Unknown*

Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- SWG priority order within each group

Goal SWG Objective Rank 1 CO/FoR Physics of the early universe IGM - 1. Imaging 1/3 2 CO/FOR Physics of the early universe IGM - 1. Imaging 1/3 3 CO/FOR Physics of the early universe IGM - 1. Imaborption line spectra (21cm forest) 3/3 4 Pulsars Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection 1/3 5 Pulsars Characterising the pulsar population 1/3 6 Pulsars Characterising the pulsar population 1/3 7 Pulsars Finding and using (Millisecond) Pulsars in Globular Otsters and External Galaxies 2/3 9 Pulsars Mapping the gulsar beam 3/3 10 Pulsars Mapping the Galactic Structure 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 H Resolved HI Ikinematics and morphology of "10°10 M_sol mass galaxies out to C*0.8 1/5 14 HI High spatial resolution studies of the ISM in our Galaxy 3/5 15 HI Multirresolution mapaping studie	Science			SWG
1 CO/Co8 Physics of the early universe IGM - 1. Imaging 1/3 2 CO/Co8 Physics of the early universe IGM - 11. Power spectrum 2/3 4 Pulsars Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection 1/3 5 Pulsars High precision timing for testing gravity and GW detection 1/3 6 Pulsars Finding and using (Millicscond) Pulsars in Globular Clusters and External Galaxies 2/3 7 Pulsars Finding pulsars in the Galactic Centre 2/3 9 Pulsars Mapping the pulsar beam 3/3 10 Pulsars Mapping the Galactic Structure 3/3 11 Pulsars Mapping the Galactic Structure 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 Hi Resolved Hi knematics and morphology of "10°10 M_sol mass galaxies out to 2"0.8 1/5 14 Hi High precision studies of the lisk in the nearby Universe. 2/5 1/5 15 Hi Multi-resolution studies of the lisk in our Galaxy 3/5 1/5 16 Hi High precisis structure 1/5 1/5	Goal	SWG	Objective	Rank
2 CO/Co8 Physics of the early universe IGM - II. Power spectrum 2/3 3 CO/Co8 Physics of the early universe IGM - III. Habsorption line spectra [21cm forest] 3/3 4 Pulsars Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection 1/3 5 Pulsars Characterising the pulsar population 2/3 7 Pulsars Finding and using (Millisecond) Pulsars in Globular Clusters and External Galaxies 2/3 9 Pulsars Astrometric measurements of pulsars to enable improved tests of GR 2/3 10 Pulsars Mapping the pulsar beam 3/3 11 Pulsars Mapping the Galactic Structure 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved HI kinematics and morphology of "10*10 M_sol mass galaxies out to 70.8 1/5 14 HI High spatial resolution studies of the ISM in our Galaxy 3/5 15 HI Multi-resolution studies out to the highest redshifts. 4/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 16 HI HI Transient	1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
3 CO/CoR Physics of the early universe (GM - III. HI absorption line spectra (21cm forest) 3/3 4 Pulsars Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection 1/3 5 Pulsars High precision timing for testing gravity and GW detection 1/3 6 Pulsars Finding and using (Millescond) Pulsars in Globular Clusters and External Galaxies 2/3 7 Pulsars Astrometrix measurements of pulsars to enable improved tests of GR 2/3 9 Pulsars Mapping the pulsar beam 3/3 10 Pulsars Mapping the Galactic Structure 3/3 11 Pulsars Mapping the Galactic Structure 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved HI kinematics and morphology of "10*10 M_sol mass galaxies out to z*0.8 1/5 14 HI Higs patial resolution mapping studies of the ISM in our Galaxy 3/3 16 HI Higs patial resolution mapping studies of the ISM in our Galaxy 3/5 17 HI Higs patial resolution mapping studies of the ISM in our Galaxy 3/5 18 Transients Soke missin	2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4 Pulsars Reveal pulsar population and MSP5 for gravity tests and Gravitational Wave detection 1/3 5 Pulsars Characterising the pulsar population 1/3 6 Pulsars Characterising the pulsar population 2/3 7 Pulsars Finding and using (Milliscond) Pulsars in Globular Clusters and External Glaxies 2/3 9 Pulsars Astrometric measurements of pulsars to enable improved tests of GR 2/3 10 Pulsars Mapping the pulsar beam 3/3 11 Pulsars Mapping the Glalactic Structure 3/3 13 HI Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to 2~0.8 1/5 14 HI High spatial resolution studies of the ISM in uri Galaxy 3/5 16 HI HI Hi absorption studies out to the highest redshifts. 4/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM <	3	CD/EoR	Physics of the early universe IGM - III. HI absorption line spectra (21cm forest)	3/3
5 Pulsars High precision timing for testing gravity and GW detection 1/3 6 Pulsars Characterising the pulsar population 2/3 7 Pulsars Finding and using (Millisecond) Pulsars in Globular Clusters and External Galaxies 2/3 8 Pulsars Astrometric measurements of pulsars to enable improved tests of GR 2/3 10 Pulsars Mapping the gulsars and their environments through their interactions 3/3 11 Pulsars Mapping the Galactic Structure 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved HI kinematics and morphology of "10°10 M_sol mass galaxies out to 2"0.8 1/5 15 HI Multi-resolution mapping studies of the ISM in the nearby Universe. 2/5 16 HI Hild socrition studies out to the highest redshifts. 4/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 18 Transients Solve missing baryon problem at 2"2 and determine the Dark Energy Equation of State -1/4 20 Transients Accessing New Physics using Ulfra-tuminous Cosmic Explosions -1/4 21	4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
6 Pulsars Characterising the pulsar population 2/3 7 Pulsars Finding nulsars in the Galactic Centre 2/3 9 Pulsars Astrometric measurements of pulsars to enable improved tests of GR 2/3 10 Pulsars Mapping the pulsar beam 3/3 11 Pulsars Mapping the galast beam 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved Hi kinematics and morphology of ~10°10 M_sol mass galaxies out to 2°0.8 1/5 14 Hi High spatial resolution studies of the ISM in the nearby Universe. 2/5 15 HI Multi-resolution mapping studies of the ISM in our Galaxy 3/5 16 HI Hi absorption studies out to the highest redshifts. 4/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 18 Transients Solve missing baryon problem at x ² and determine the Dark Energy Equation of State =1/4 20 Transients Balaxy growth through measurements of Black Hole accretion, growth and feedback 3/4 21 Transients Detectrube Electromagnetic fields and rotational per	5	Pulsars	High precision timing for testing gravity and GW detection	1/3
7 Pulsars Finding and using (Milliscond) Pulsars in Globular Clusters and External Galaxies 2/3 8 Pulsars Finding pulsars in the Galactic Centre 2/3 9 Pulsars Mapping the pulsar beam 3/3 10 Pulsars Understanding pulsars and their environments through their interactions 3/3 11 Pulsars Mapping the Galacts Structure 3/3 12 Pulsars Mapping the Galacts Structure 3/3 13 HI Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to 2~0.8 1/5 14 HI High spatial resolution studies of the ISM in our Galaxy 3/5 15 HI Multi-resolution studies of the ISM in our Galaxy 3/5 16 HI Hi absprotion studies of the ISM in cosmic Explosions =1/4 19 Transients Accessing New Physics using Ultra-turninous Cosmic Explosions =1/4 20 Transients Detect the Electromagnetic Counterparts to Gravitational Wave Events 4/4 21 Transients Detect the Electromagnetic fields and rotational periods 2/5 23 Cradle of Life Map dust grain growth in the terrestrial planet fo	6	Pulsars	Characterising the pulsar population	2/3
8 Pulsars Finding pulsars in the Galactic Centre 2/3 9 Pulsars Astrometric measurements of pulsars to enable improved tests of GR 2/3 10 Pulsars Mapping the pulsar beam 3/3 11 Pulsars Mapping the Galactic Structure 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z*0.8 1/5 14 HI High spatial resolution studies of the ISM in the nearby Universe. 2/5 16 HI HI absorption studies out to the highest redshifts. 4/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 18 Transients Accessing New Physics using Utra-turninous Cosmic Explosions -1/4 20 Transients Accessing New Physics using Utra-turninous Cosmic Explosions -1/4 21 Transients Accessing New Physics using Utra-turninous Cosmic Explosions -1/4 22 Cradle of Life Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc. 1/5 </th <th>7</th> <th>Pulsars</th> <th>Finding and using (Millisecond) Pulsars in Globular Clusters and External Galaxies</th> <th>2/3</th>	7	Pulsars	Finding and using (Millisecond) Pulsars in Globular Clusters and External Galaxies	2/3
9 Pulsars Astrometric measurements of pulsars to enable improved tests of GR 2/3 10 Pulsars Mapping the pulsars and their environments through their interactions 3/3 11 Pulsars Understanding pulsars and their environments through their interactions 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved HI kinematics and morphology of "10°10 M_sol mass galaxies out to 2"0.8 1/5 14 HI High spatial resolution studies of the ISM in our Galaxy 3/5 16 HI Hi absorption studies of the ISM in our Galaxy 3/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 18 Transients Solve missing baryon problem at x"2 and determine the Dark Energy Equation of State -1/4 20 Transients Galaxy growth through measurements of Black Hole accretion, growth and feedback 3/4 21 Transients Detect the Electromagnetic Counterparts to Gravitational Wave Events 4/4 22 Cradle of Life Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc. 1/5 <t< th=""><th>8</th><th>Pulsars</th><th>Finding pulsars in the Galactic Centre</th><th>2/3</th></t<>	8	Pulsars	Finding pulsars in the Galactic Centre	2/3
10 Pulsars Mapping the pulsar beam 3/3 11 Pulsars Understanding pulsars and their environments through their interactions 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved Hi kinematics and morphology of ~10^10 M_sol mass galaxies out to 2~0.8 1/5 14 HI High spatial resolution studies of the ISM in our Galaxy 3/5 16 HI Hi absorption studies out to the highest redshifts. 4/5 17 HI Transients Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State =1/4 19 Transients Galaxy growth through measurements of Black Hole accretion, growth and feedback 3/4 21 Transients Galaxy growth through measurements of Black Hole accretion, growth and feedback 3/4 22 Cradle of Life Map ping of the sub-structure and dynamics of nearby clusters using maser emission. 2/5 23 Cradle of Life Survey all nearby (~100 pc) stars for radio emission from technological civilizations. 3/5 24 Cradle of Life Mapping of the sub-structure and dynamics of nearby clusters using maser emission. 5/5 27 Magnetism	9	Pulsars	Astrometric measurements of pulsars to enable improved tests of GR	2/3
11 Pulsars Understanding pulsars and their environments through their interactions 3/3 12 Pulsars Mapping the Galactic Structure 3/3 13 HI Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8 1/5 14 HI High spatial resolution studies of the ISM in the nearby Universe. 2/5 15 HI Multi-resolution mapping studies of the ISM in our Galaxy 3/5 16 HI Hi absorption studies out to the highest redshifts. 4/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 18 Transients Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State =1/4 20 Transients Galaxy growth through measurements of Black Hole accretion, growth and feedback 3/4 21 Transients Detect the Electromagnetic Counterparts to Gravitational Wave Events 4/4 22 Cradle of Life Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc. 1/5 23 Cradle of Life Mapping of the sub-structure and dynamics of nearby clusters using maser emission. 5/5 24 Cradle of Life Map	10	Pulsars	Mapping the pulsar beam	3/3
12PulsarsMapping the Galactic Structure3/313HIResolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to 2~0.81/514HIHigh spatial resolution studies of the ISM in the nearby Universe.2/515HIMulti-resolution mapping studies of the ISM in our Galaxy3/516HIHI absorption studies out to the highest redshifts.4/517HIThe gaseous interface and accretion physics between galaxies and the IGM5/518TransientsSolve missing baryon problem at z~2 and determine the Dark Energy Equation of State=1/420TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/421TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Gradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/524MagnetismDetection of pare-biotic molecules in pre-stellar and intergalactic magnetic fields at high redshifts - 1.2/526Gradle of LifeMapping of the sub-structure and amplification of magnetic fields at high redshifts - 1.2/530MagnetismDetectrion of polarised emission in Cosmic Web filaments3/531MagnetismIntrinsic properties of polar	11	Pulsars	Understanding pulsars and their environments through their interactions	3/3
13 HI Resolved HI kinematics and morphology of "10"10 M_sol mass galaxies out to 2"0.8 1/5 14 HI High spatial resolution studies of the ISM in the nearby Universe. 2/5 15 HI Multi-resolution mapping studies of the ISM in our Galaxy 3/5 16 HI HI absorption studies out to the highest redshifts. 4/5 17 HI The gaseous interface and accretion physics between galaxies and the IGM 5/5 18 Transients Solve missing baryon problem at x"2 and determine the Dark Energy Equation of State -1/4 19 Transients Galaxy growth through measurements of Black Hole accretion, growth and feedback 3/4 20 Transients Detect the Electromagnetic Counterparts to Gravitational Wave Events 4/4 21 Transients Detect the Electromagnetic Counterparts to Gravitational periods 2/5 24 Cradle of Life Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc 1/5 23 Cradle of Life Mapping of the sub-structure and dynamics of nearby clusters using maser emission. 3/5 25 Gradle of Life Mapping of the sub-structure and dynamics of nagnetic fields at high redshifts - I. 2/5	12	Pulsars	Mapping the Galactic Structure	3/3
14HiHigh spatial resolution studies of the ISM in the nearby Universe.2/515HIMulti-resolution mapping studies of the ISM in our Galaxy3/516HIHI absorption studies out to the highest redshifts.4/517HIThe gaseous interface and accretion physics between galaxies and the IGM5/518TransientsSolve missing baryon problem at x ⁻² and determine the Dark Energy Equation of State=1/419TransientsAccessing New Physics using Ultra-Luminous Cosmic Explosions=1/420TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/421TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Cradle of LifeSurvey all nearby ("100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - I.2/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - I.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - I.4/532CosmologyCosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/5	13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
15HIMulti-resolution mapping studies of the ISM in our Galaxy3/516HIHI absorption studies out to the highest redshifts.4/517HIThe gaseous interface and accretion physics between galaxies and the IGM5/518TransientsSolve missing baryon problem at x"2 and determine the Dark Energy Equation of State=1/419TransientsAccessing New Physics using Ultra-turninous Cosmic Explosions=1/420TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/421TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Cradle of LifeThe detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.4/526Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismDetection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.4/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/529MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/531MagnetismIntrinsic properties of polarised sources5/534CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation funct	14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
16HIHI absorption studies out to the highest redshifts.4/517HIThe gaseous interface and accretion physics between galaxies and the IGM5/518TransientsSolve missing baryon problem at z*2 and determine the Dark Energy Equation of State=1/419TransientsAccessing New Physics using Ultra-Luminous Cosmic Explosions=1/420TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/421TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc.1/523Cradle of LifeCharacterise exo-planet magnetic fields and rotational periods2/524Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole	15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
17HIThe gaseous interface and accretion physics between galaxies and the IGM5/518TransientsSolve missing baryon problem at x ² and determine the Dark Energy Equation of State=1/419TransientsAccessing New Physics using Ultra-Luminous Cosmic Explosions=1/420TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/421TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/526Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/529MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 11.4/533CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/534CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMagnetismDetermine origin, main	16	HI	HI absorption studies out to the highest redshifts.	4/5
18TransientsSolve missing baryon problem at x ⁻² and determine the Dark Energy Equation of State=1/419TransientsAccessing New Physics using Ultra-Luminous Cosmic Explosions=1/420TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/421TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Cradle of LifeCharacterise exo-planet magnetic fields and rotational periods2/524Cradle of LifeThe detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.4/526Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyMagnet correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMagnet correlation functions to probe non-Gaussianity and the matter dipole </th <th>17</th> <th>HI</th> <th>The gaseous interface and accretion physics between galaxies and the IGM</th> <th>5/5</th>	17	HI	The gaseous interface and accretion physics between galaxies and the IGM	5/5
19TransientsAccessing New Physics using Ultra-Luminous Cosmic Explosions=1/420TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/421TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Gradle of LifeCharacterise exo-planet magnetic fields and rotational Periods2/524Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Gradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/531MagnetismDetermine origin, maintenance and amplification of gravity on super-horizon scales.1/533CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/534CosmologyMagnet correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMag the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & gravia power s	18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
20TransientsGalaxy growth through measurements of Black Hole accretion, growth and feedback3/421TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Cradle of LifeCharacterise exo-planet magnetic fields and rotational periods2/524Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields at 1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/529MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyMagular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & general relativity with fore-runn	19	Transients	Accessing New Physics using Ultra-Luminous Cosmic Explosions	=1/4
21TransientsDetect the Electromagnetic Counterparts to Gravitational Wave Events4/422Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Cradle of LifeCharacterise exo-planet magnetic fields and rotational periods2/524Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar cores at distance of 100 pc.4/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/529MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/533CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/534CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536Cosmology<	20	Transients	Galaxy growth through measurements of Black Hole accretion, growth and feedback	3/4
22Cradle of LifeMap dust grain growth in the terrestrial planet forming zones at a distance of 100 pc1/523Cradle of LifeCharacterise exo-planet magnetic fields and rotational periods2/524Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeThe detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.4/526Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/529MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.4/533CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/534CosmologyMagn the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/5<	21	Transients	Detect the Electromagnetic Counterparts to Gravitational Wave Events	4/4
23Cradle of LifeCharacterise exo-planet magnetic fields and rotational periods2/524Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeThe detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.4/526Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - I.2/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/534CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - I	22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
24Cradle of LifeSurvey all nearby (~100 pc) stars for radio emission from technological civilizations.3/525Cradle of LifeThe detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.4/526Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 11.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 11.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/538ContinuumMeasure the Star formation history of the Universe (SFHU) - 1. Non-thermal processes1/839ContinuumProbe the role of black holes in galaxy evolution - 1.3/840ContinuumProbe the role of black holes in galaxy evolution - 1.3/841ContinuumProbe the role of black holes in galaxy evolution - 1.5/8 </th <td>23</td> <th>Cradle of Life</th> <td>Characterise exo-planet magnetic fields and rotational periods</td> <td>2/5</td>	23	Cradle of Life	Characterise exo-planet magnetic fields and rotational periods	2/5
25Cradle of LifeThe detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.4/526Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - I.2/529MagnetismDetection of polarised emission in Cosmic Web filaments3/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumProbe the role of black holes in galaxy evolution - I.3/839ContinuumProbe the role of black hole	24	Cradle of Life	Survey all nearby (~100 pc) stars for radio emission from technological civilizations.	3/5
26Cradle of LifeMapping of the sub-structure and dynamics of nearby clusters using maser emission.5/527MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - I.2/529MagnetismDetection of polarised emission in Cosmic Web filaments3/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe to cosmic rays and magnetic fields in ICM and cosmic filaments.5/8 <t< th=""><td>25</td><th>Cradle of Life</th><td>The detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.</td><td>4/5</td></t<>	25	Cradle of Life	The detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.	4/5
27MagnetismThe resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields1/528MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - I.2/529MagnetismDetection of polarised emission in Cosmic Web filaments3/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe the role of black holes in galaxy evolution - II.6/842Continuum <td>26</td> <th>Cradle of Life</th> <td>Mapping of the sub-structure and dynamics of nearby clusters using maser emission.</td> <td>5/5</td>	26	Cradle of Life	Mapping of the sub-structure and dynamics of nearby clusters using maser emission.	5/5
28MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 1.2/529MagnetismDetection of polarised emission in Cosmic Web filaments3/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - 11.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - 1. Non-thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - 1.3/840ContinuumProbe the role of black holes in galaxy evolution - 11.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - 1.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
29MagnetismDetection of polarised emission in Cosmic Web filaments3/530MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	28	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - I.	2/5
30MagnetismDetermine origin, maintenance and amplification of magnetic fields at high redshifts - II.4/531MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	29	Magnetism	Detection of polarised emission in Cosmic Web filaments	3/5
31MagnetismIntrinsic properties of polarised sources5/532CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - II.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	30	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - II.	4/5
32CosmologyConstraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.1/533CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - II.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	31	Magnetism	Intrinsic properties of polarised sources	5/5
33CosmologyAngular correlation functions to probe non-Gaussianity and the matter dipole2/534CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
34CosmologyMap the dark Universe with a completely new kind of weak lensing survey - in the radio.3/535CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
35CosmologyDark energy & GR via power spectrum, BAO, redshift-space distortions and topology.4/536CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	34	Cosmology	Map the dark Universe with a completely new kind of weak lensing survey - in the radio.	3/5
36CosmologyTest dark energy & general relativity with fore-runner of the 'billion galaxy' survey.5/537ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	35	Cosmology	Dark energy & GR via power spectrum, BAO, redshift-space distortions and topology.	4/5
37ContinuumMeasure the Star formation history of the Universe (SFHU) - I. Non-thermal processes1/838ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	36	Cosmology	Test dark energy & general relativity with fore-runner of the 'billion galaxy' survey.	5/5
38ContinuumMeasure the Star formation history of the Universe (SFHU) - II. Thermal processes2/839ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	37	Continuum	Measure the Star formation history of the Universe (SFHU) - I. Non-thermal processes	1/8
39ContinuumProbe the role of black holes in galaxy evolution - I.3/840ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	38	Continuum	Measure the Star formation history of the Universe (SFHU) - II. Thermal processes	2/8
40ContinuumProbe the role of black holes in galaxy evolution - II.4/841ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	39	Continuum	Probe the role of black holes in galaxy evolution - I.	3/8
41ContinuumProbe cosmic rays and magnetic fields in ICM and cosmic filaments.5/842ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	40	Continuum	Probe the role of black holes in galaxy evolution - II.	4/8
42ContinuumStudy the detailed astrophysics of star-formation and accretion processes - I.6/843ContinuumProbing dark matter and the high redshift Universe with strong gravitational lensing.7/8	41	Continuum	Probe cosmic rays and magnetic fields in ICM and cosmic filaments.	5/8
43 Continuum Probing dark matter and the high redshift Universe with strong gravitational lensing. 7/8	42	Continuum	Study the detailed astrophysics of star-formation and accretion processes - I.	6/8
	43	Continuum	Probing dark matter and the high redshift Universe with strong gravitational lensing.	7/8
44ContinuumLegacy/Serendipity/Rare.8/8	44	Continuum	Legacy/Serendipity/Rare.	8/8

Highest Priority SKA1 Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- Priority order within each group

Science Goal	SWG	Obiective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37+38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal + Thermal processes	1+2/8

Highest Priority SKA1 Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- Priority order within each group
- most science goals require frequencies below 1420 MHz

Science	SINC		SWG
Goal	SWG	Objective	Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37+38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal + Thermal processes	1+2/8

Highest Priority Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- Priority order within each group
- most science goals require frequencies below 1420 MHz and survey speed

Science Goal	SWG	Objective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37+38	Continuum	Star formation history of the Universe (SFHU) – I-II. Non-thermal + Thermal processes	1+2/8

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Cradle of Life & Astrobiology	Proto-planetary disks; imaging inside the snow/ice line (@ < 100pc), Searches for amino acids.	Proto-planetary disks; sub-AU imaging (@ < 150 pc), Studies of amino acids.	
The officie of Life & Astrobiology	Targeted SETI: airport radar 10^4 nearby stars.	Ultra-sensitive SETI: airport radar 10^5 nearby star, TV ~10 stars.	
Strong-field Tests of Gravity with	1st detection of nHz-stochastic gravitational wave background.	Gravitational wave astronomy of discrete sources: constraining galaxy evolution, cosmological GWs and cosmic strings.	
Pulsars and Black Holes	Discover and use NS-NS and PSR-BH binaries to provide the best tests of gravity theories and General Relativity.	Find all ~40,000 visible pulsars in the Galaxy, use the most relativistic systems to test cosmic censorship and the no-hair theorem.	
The Origin and Evolution of Cosmic	The role of magnetism from sub-galactic to Cosmic Web scales, the RM-grid @ 300/deg2.	The origin and amplification of cosmic magnetic fields, the RM-grid @ 5000/deg2.	
Magnetism	Faraday tomography of extended sources, 100pc resolution at 14Mpc, 1 kpc @ $z \approx 0.04$.	Faraday tomography of extended sources, 100pc resolution at 50Mpc, 1 kpc @ $z \approx 0.13$.	and the state
Galaxy Evolution probed by Neutral	Gas properties of 10 ^A 7 galaxies, $\langle z \rangle \approx 0.3$, evolution to $z \approx 1$, BAO complement to Euclid.	Gas properties of 10^9 galaxies, $\langle z \rangle \approx 1$, evolution to $z \approx 5$, world-class precision cosmology.	a la ser
Hydrogen	Detailed interstellar medium of nearby galaxies (3 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	Detailed interstellar medium of nearby galaxies (10 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Cradle of Life & Astrobiology	Proto-planetary disks; imaging inside the snow/ice line (@ < 100pc), Searches for amino acids.	Proto-planetary disks; sub-AU imaging (@ < 150 pc), Studies of amino acids.	
The order of Life d Addobiology	Targeted SETI: airport radar 10^4 nearby stars.	Ultra-sensitive SETI: airport radar 10^5 nearby star, TV ~10 stars.	
Strong-field Tests of Gravity with	1st detection of nHz-stochastic gravitational wave background.	Gravitational wave astronomy of discrete sources: constraining galaxy evolution, cosmological GWs and cosmic strings.	
Pulsars and Black Holes	Discover and use NS-NS and PSR-BH binaries to provide the best tests of gravity theories and General Relativity.	Find all ~40,000 visible pulsars in the Galaxy, use the most relativistic systems to test cosmic censorship and the no-hair theorem.	TADD'
The Origin and Evolution of Cosmic	The role of magnetism from sub-galactic to Cosmic Web scales, the RM-grid @ 300/deg2.	The origin and amplification of cosmic magnetic fields, the RM-grid @ 5000/deg2.	
Magnetism	Faraday tomography of extended sources, 100pc resolution at 14Mpc, 1 kpc @ $z \approx 0.04$.	Faraday tomography of extended sources, 100pc resolution at 50Mpc, 1 kpc @ $z \approx 0.13$.	Mar Alle
Galaxy Evolution probed by Neutral	Gas properties of 10^7 galaxies, $\langle z \rangle \approx 0.3$, evolution to $z \approx 1$, BAO complement to Euclid.	Gas properties of 10^9 galaxies, <z> ≈ 1, evolution to z ≈ 5, world-class precision cosmology.</z>	and and
Hydrogen	Detailed interstellar medium of nearby galaxies (3 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	Detailed interstellar medium of nearby galaxies (10 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	

Requires mid-frequency survey speed

Headline Magnetism Science

 3D magnetic tomography of the Galaxy and distant universe; from current 1 RM deg⁻², SKA1: 300 deg⁻² to SKA2: 5000 deg⁻² (Johnston-Hollitt et al. 2015)

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Cradle of Life & Astrobiology	Proto-planetary disks; imaging inside the snow/ice line (@ < 100pc), Searches for amino acids.	Proto-planetary disks; sub-AU imaging (@ < 150 pc), Studies of amino acids.	
The order of Life d Addobiology	Targeted SETI: airport radar 10^4 nearby stars.	Ultra-sensitive SETI: airport radar 10^5 nearby star, TV ~10 stars.	
Strong-field Tests of Gravity with	1st detection of nHz-stochastic gravitational wave background.	Gravitational wave astronomy of discrete sources: constraining galaxy evolution, cosmological GWs and cosmic strings.	
Pulsars and Black Holes	Discover and use NS-NS and PSR-BH binaries to provide the best tests of gravity theories and General Relativity.	Find all ~40,000 visible pulsars in the Galaxy, use the most relativistic systems to test cosmic censorship and the no-hair theorem.	TADD'
The Origin and Evolution of Cosmic	The role of magnetism from sub-galactic to Cosmic Web scales, the RM-grid @ 300/deg2.	The origin and amplification of cosmic magnetic fields, the RM-grid @ 5000/deg2.	
Magnetism	Faraday tomography of extended sources, 100pc resolution at 14Mpc, 1 kpc @ $z \approx 0.04$.	Faraday tomography of extended sources, 100pc resolution at 50Mpc, 1 kpc @ $z \approx 0.13$.	Mar Alle
Galaxy Evolution probed by Neutral	Gas properties of 10^7 galaxies, $\langle z \rangle \approx 0.3$, evolution to $z \approx 1$, BAO complement to Euclid.	Gas properties of 10^9 galaxies, <z> ≈ 1, evolution to z ≈ 5, world-class precision cosmology.</z>	and and
Hydrogen	Detailed interstellar medium of nearby galaxies (3 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	Detailed interstellar medium of nearby galaxies (10 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	

Requires mid-frequency survey speed

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Transient Padio Sky	Use fast radio bursts to uncover the missing "normal" matter in the universe.	Fast radio bursts as unique probes of fundamental cosmological parameters and intergalactic magnetic fields.	Man M
	Study feedback from the most energetic cosmic explosions and the disruption of stars by super-massive black holes.	Exploring the unknown: new exotic astrophysical phenomena in discovery phase space.	
Galaxy Evolution probed in the Radio	Star formation rates (10 M_Sun/yr to $z \sim 4$).	Star formation rates (10 M_Sun/yr to $z \sim 10$).	
Continuum	Resolved star formation astrophysics (sub-kpc active regions at z ~ 1).	Resolved star formation astrophysics (sub- kpc active regions at z ~ 6).	
Cosmology & Dark Energy	Constraints on DE, modified gravity, the distribution & evolution of matter on super- horizon scales: competitive to Euclid.	Constraints on DE, modified gravity, the distribution & evolution of matter on super- horizon scales: redefines state-of-art.	
Cosmology & Dark Energy	Primordial non-Gaussianity and the matter dipole: 2x Euclid.	Primordial non-Gaussianity and the matter dipole: 10x Euclid.	
Cosmic Dawn and the Epoch of	Direct imaging of EoR structures (z = 6 - 12).	Direct imaging of Cosmic Dawn structures (z = 12 - 30).	· · · · · ·
Reionization	Power spectra of Cosmic Dawn down to arcmin scales, possible imaging at 10 arcmin.	First glimpse of the Dark Ages (z > 30).	362

Requires mid-frequency survey speed

Fast Radio Bursts as a cosmological probe

• large samples (~1000) of spectroscopically identified FRBs may provide a means of probing the missing baryons

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Transient Padio Sky	Use fast radio bursts to uncover the missing "normal" matter in the universe.	Fast radio bursts as unique probes of fundamental cosmological parameters and intergalactic magnetic fields.	Man M
	Study feedback from the most energetic cosmic explosions and the disruption of stars by super-massive black holes.	Exploring the unknown: new exotic astrophysical phenomena in discovery phase space.	
Galaxy Evolution probed in the Radio	Star formation rates (10 M_Sun/yr to $z \sim 4$).	Star formation rates (10 M_Sun/yr to $z \sim 10$).	
Continuum	Resolved star formation astrophysics (sub-kpc active regions at z ~ 1).	Resolved star formation astrophysics (sub- kpc active regions at z ~ 6).	
Cosmology & Dark Energy	Constraints on DE, modified gravity, the distribution & evolution of matter on super- horizon scales: competitive to Euclid.	Constraints on DE, modified gravity, the distribution & evolution of matter on super- horizon scales: redefines state-of-art.	
Cosmology & Dark Energy	Primordial non-Gaussianity and the matter dipole: 2x Euclid.	Primordial non-Gaussianity and the matter dipole: 10x Euclid.	
Cosmic Dawn and the Epoch of	Direct imaging of EoR structures (z = 6 - 12).	Direct imaging of Cosmic Dawn structures (z = 12 - 30).	· · · · · ·
Reionization	Power spectra of Cosmic Dawn down to arcmin scales, possible imaging at 10 arcmin.	First glimpse of the Dark Ages (z > 30).	362

Requires mid-frequency survey speed

Some recommendations for MFAA

- Focus on strengths of the instrument (wide field of view and survey speed)
- Do not confuse the science cases for the (full) SKA with those of a demonstrator
- Make your technology down selects early, otherwise you risk wasting time and resources
- Focus on getting a working prototype that is low cost, low power consumption and can be calibrated

SKA Science

The SKA will revolutionise our understanding of the Universe and the laws of fundamental physics

http://astronomers.skatelescope.org/

Crofits and acknowledgements: Opropositi et al. (Caltech) (EGR Intege). Dowy Re (Pulsar Intege), INASA/JR-Caltech/SSC (Datary reclution Intege+ROC 3190 Friet). NASA/Stellenk-Calcred Fabricia for Space Research's TRACE Team (Cosmic Megnetism Intege-Bank Carona), INASA/JPL-Caltech (Crede of Me Intege)

Images courtesy of Tom Oosterloo (HI science working group) Simulations by Joop Schaye

• How do galaxies interact with the surrounding `Cosmic Web' (feeding and feedback)

HI Cosmology with SKA: Baryon Acoustic Oscillations

• Constraining Dark Energy models with redshift-resolved BAO measurements as a "cosmic ruler"

HI Cosmology with SKA: Baryon Acoustic Oscillations

 Constraining Dark Energy models with redshift-resolved BAO measurements as a "cosmic ruler"

HI Cosmology with SKA: Baryon Acoustic Oscillations

• Reduced uncertainty on the *dilation factor* which depends on the evolution of dark energy

- More than 10 "FRB" events now detected (after first "Lorimer" burst):
 - $S = 0.5 1.3 Jy, \Delta t = 1 6 msec, DM = 550 1100 cm^{-3} pc$
- Estimated event rate: 1x10⁴ sky⁻¹ day⁻¹
- Completely unknown origin, possibly at cosmological distances

Pulsar surveys and timing

- cosmic lighthouses
- masses: ~1.4 M_{\odot} within 20km
- B ~ 4.4×10^{13} Gauss
- periods: 1.4ms to 8.5s

SKA1 MID: >350 MHz

- ~30,000 normal pulsars
- ~2,000 millisecond psrs
- ~100 relativistic binaries
- first pulsars in Galactic Centre
- first extragalactic pulsars

- timing precision increase by ~100x
- discovery of exotic pulsars and binaries: PSR-BH

Current estimates are that 100% of the Galactic population will accessible with SKA2

(Cordes et al. 2004; Kramer et al. 2004; Smits et al. 2009; Pulsar SWG)

Pulsar surveys and timing: testing general relativity

- millisecond pulsars are very precise astrophysical clocks, eg:
 PSR B1937+21, period = 1.5578064688197945 +/- 0.00000000000000004
- Timing residuals between ms pulsars can be used to directly detect the gravitational wave background (SMBH mergers)

