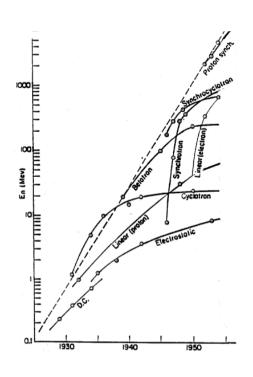


Progress and status of AAMID

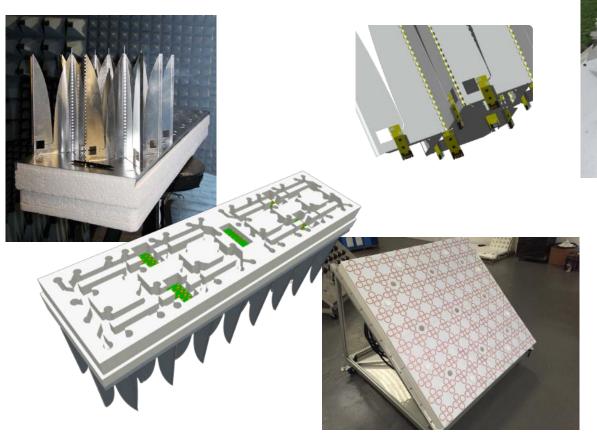
Wim van Cappellen, Consortium Lead



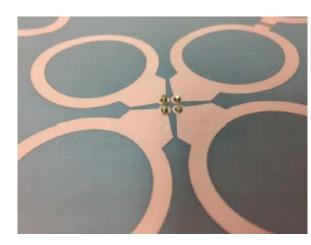
Livingstone curves

- Brought to our attention by Ron Ekers and (http://arxiv.org/ftp/arxiv/papers/1004/1004.4279.pdf)
- Most important discoveries in astronomy result from technical innovation [Harwit]
- A single technology saturates in capability
- Innovation is needed to continue exponential growth
- Adopting new technology leads to great rewards

Dishes around 1 GHz are saturating

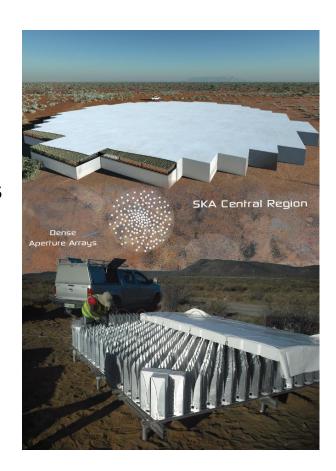

SKA2-MID:

- 1500 2000 dishes
- Exponential growth of capabilities is now paired with an exponential growth of costs
 - How to afford 2000 dishes if a 133 dish SKA1 system already costs 400 to 500 M€???
 - Operational costs (Maintenance...)



We need innovation!!!

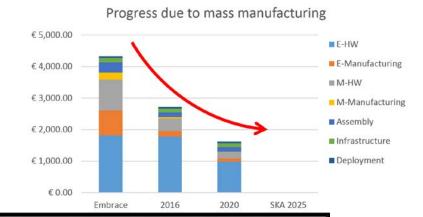
Mid-Frequency Aperture Arrays



MFAA has

- A very large field of view, and the opportunity of transient buffering
- A fast response time and pointing
- Multiple beams, concurrent observations
- A very high survey speed capability
- High sensitivity < 1.45 GHz
- Relatively low capital and operational costs
 - Low post-processing costs (large stations)
 - No moving parts
 - No vacuum, helium, cryogenics

$$P_{\text{imager}} = N_{\text{op}} \underbrace{\frac{10^5}{3} \frac{T_{\text{obs}} N_{\text{stat}}^2}{f_{\text{min}}} \frac{B_{\text{max}}^2}{D_{\text{stat}}^2}}_{\text{number of visibilities}} \left(\frac{\lambda_{\text{max}}^2 B_{\text{max}}^2}{D_{\text{stat}}^4} + N_{\text{kernel}}^2 \right)$$


MFAA Rationale

- High sensitivity and survey speed from 1450 MHz down to z ~3
- Very wide field-of-view transient observations, incl. buffering
- Bulk pulsar timing
- Can only be done with an SKA-AAMID telescope

Development progress

- Vivaldi tile costs:
 - 2009: 4200 €/m2
 - 2016: 2700 €/m2
 - 2020: 1600 €/m2
- SKA1-MID dishes: ~7000 €/m2

- Power consumption MFAA tiles:
 - 200
 - 201
 - 202

The SKA-AAMID telescope is within reach

- SKA1-MID dishes: ~60 W/m2
- Receiver temperature
 - 2009: 100 K
 - 2016: 40 K
 - 2025: 30 K

Science demonstrator

- Next logical and essential step for MFAA
- Located on the South African SKA Site
- Huge opportunities:
 - Perform unique science
 - Symbiosis with MeerKAT
 - Demonstration and verification of MFAA technology
 - Educate people for the next generation radio-telescope
 - Involvement of industry

Key challenges

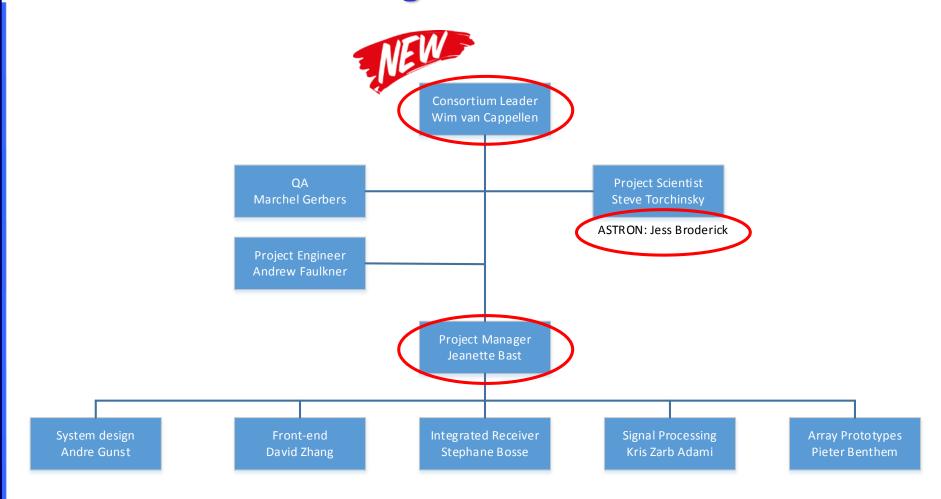
- Reducing power consumption
 - Integration
 - System optimization
 - Sustainable energy
- Reducing the capital costs
 - Design for Mass production
 - Moore's law (although flattening)
- Calibration down to thermal noise needs accurate beam and sky models to calibrate sources in near and far sidelobes
 - Algorithm development
 - Learn from other AA instruments (LOFAR, MWA, SKA1-Low)

What about the dishes?

Do we need dishes at all?

- Yes, but much less
 - On long baselines
 - Of course with PAFs > 2 GHz

SKA-AAMID



The AAMID Consortium

- The AAMID consortium aims to demonstrate maturity, competitiveness and cost-effectiveness of Mid-Frequency Aperture Arrays for SKA2.
- SKA Advanced Instrumentation Programme (AIP)

Consortium Organization

Consortium partners

Full members

ASTRON
 System design, prototyping, management

- China: KLAASA Receiver, antenna: 3x3 m² array

Observatoire de Paris (Nancay)
 Front-end MMIC's

Stellenbosch University Antenna research

University of Bordeaux

ADC

University of Cambridge System design

University of Manchester Front-end design

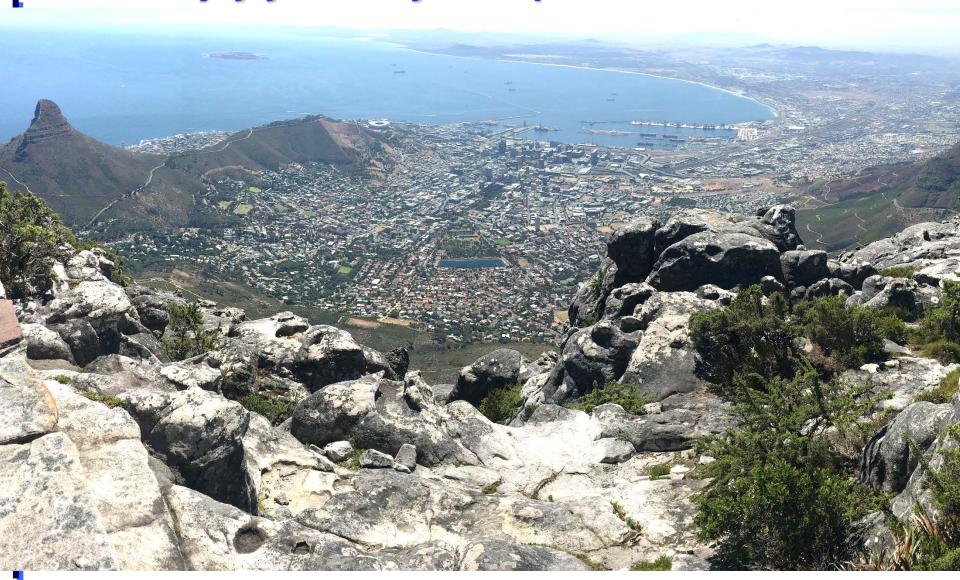
Associate members

ENGAGE SKA (Portugal)
 Renewable energy

SKA South AfricaSite support

University of Malta
 Fractal ORA

- University of Mauritius Tront-end research



Workshop Objectives

- To learn from each others ideas, identify opportunities and challenges
- Reflect ideas on SKA-AAMID science and engineering
- To inspire you, to get you thinking and acting!

Enjoy your stay in Cape Town!

