

The AAMID consortium:

Mid Frequency Aperture Array

Jan Geralt Bij de Vaate

ENGAGE SKA

The University of Manchester

UNIVERSITEIT TELLENBOSCH

Aveiro AAMID All-Hands

MFAA

A Billion Galaxy Survey Machine

'A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy'

Torchinsky 2015

- SKA1 -> SKA2
- Consortium structure
- Opportunities and Challenges
- Schedule

- Re-Baselining result for SKA1
 - Single pixel feed dishes
 - SKA1-LOW
 - PAFs deferred to AIP
 - xxM euro construction budget for AIP
 - WBSPF
 - MFAA
 - PAF

• Fair competition?

- Power?
 - Power budget for Survey was 2MWatt:
 - 140 Watt /m² (2015)
 - EMBRACE
 - ~100Watt/m² (single pol) (2009)
 - Both numbers are unacceptable for SKA2!

- Cost?
 - Budget for Survey was €10.000 /m²
 - Target AAMID €2000 /m²
 - Significant engineering required (for both)

- (more) Challenges?
 - Calibration
 - Imaging
 - Wide band performance
- SKA1-LOW will resolve some of this

- Large Field of View: surveys
- Multiple FoVs: Science + Calibration
- High Filling factor possible
- Fast response time
- Station diameter > dish diameter:
 - Much-much lower imaging compute cost

$$P_{imager} = N_{op} \underbrace{\frac{10^{5}}{3} \frac{T_{obs} N_{stat}^{2}}{f_{min}} \frac{B_{max}^{2}}{D_{stat}^{2}}}_{number of visibilities}} \begin{pmatrix} \lambda_{max}^{2} B_{max}^{2} + N_{kernel}^{2} \end{pmatrix}$$
 Wijnholds 2013

- ASTRON
- KLAASA (China)
- Observatoire d'Paris
- University of Bordeaux
- University of Cambridge
- University of Manchester
- ENGAGE SKA (Portugal)
- Stellenbosch University
- Associate members:
- SKA South Africa (incl. Rob Millenaar)
- Mauritius
- Talks started with University College London

- Good progress on all work packages
- New ORA, new LPDA, new DDA, new Beamformer MMICs, new ADCs, new LNAs, new Low cost manufacturing approaches etc.
- Design meetings Dwingeloo, Manchester, China

April 2015

- SRR, end of stage 1: Nov 2015
 - Front-end decision
- PDR, end of stage 2: Nov 2016

April 2015

Parameter	Value or range	Units
A _{eff} /T _{sys} at 1GHz	40	m²/K
Frequency range	400 - 1450	MHz
Bandwidth	>500	MHz
Baseline length	300 - 1000	m
Compactness	50%	A _{eff} inside 100m
Number of stations	10 - 20	
Independent fields-of-view	≥2	
HPBW (FoV) at 1GHz	15 (175)	deg (deg ²)
Polarizations	Full Stokes	

- 2000 m²
- This system would already give competitive survey performance Van Bemmel 2013

April 2015

• MFAA should consider the **AA-MID** system

(AA-MID = complete telescope)

- Back-end should be considered
- Implications on correlator, CSP, and imager, SDP
- L0 for SKA2
- How? Stronger system team
- Concept Design Review for science capable demonstrator 2016

- Mid Frequency Aperture Arrays would give the greatest benefits for (survey) radio astronomy
- Integration & Front-end design
 - -> cost reduction
 - -> power consumption reduction
- Competitive performance
- Science capable demonstrator within reach