

Progress Toward the SKA: Views on Modeling & Imaging

Tobia D. Carozzi

2nd MIDPREP, Aveiro Portugal, 2015-04-20

SKA feed modeling

- . Chalmers/OSO is involved in
 - Band 1
 - -350 1050 MHz
 - Band B
 - 4.6 24 GHz
- These are wideband bands >1:2 (wider than octave)
- . Have used numerous modeling tools
 - FEKO, CST, GRASP, in-house sensitivity S/W

FEKO modeling multiscale modeling

Considered Wideband technologies

- Eleven feed
 - Original feed invented at Chalmers
 - Based on two side-byside (wideband) dipoles
- Quadridge feed horn (QRFH)
 - Legacy feed

Down select results band 1

Additional modeling required

- Interferometry modeling
 - . SKA sky models
 - MeqTrees
- RFI modeling
 - . Widebands imply more RFI
 - Potentially limiting
 - Site characterization not enough
 - Need parametric models
 - Need more research and onsite measurements!
 - E.g.: recent discovery of a peryton cause...

CHALMERS

New Interferometric Imaging Paradigm: Spherical Wave Transform

Imaging on Sphere

- All astronomical imaging is ultimately of the celestial sphere
- Yet historically interferometry is based on planar domains
 - . Leads to use of Cartesian Fourier transform
- Cartesian Fourier paradigm becomes messy when dealing with Celestial sphere
 - . Faceting
 - W-term corrections
 - etc

Flat Earth syndrome

- As Earthlings we have an innate preference for planarity
 - So Cartesian Fourier transform is natural in groundbased interferometer
- Consider a space based interferometer
 - . No planes here!
- Spherical Fourier transform
 more natural

SPACE BASED ULTRA LONG WAVELENGTH RADIO OBSERVATORY

OPENING UP THE LAST UNEXPLORED REQUENCY RANGE FOR ASTRONOMY

Spherical Measurement Equation

Radio interferometric Meq is now the standard formalism in imaging and calibration

• **i.e.**
$$V(u, v, w) = \int B(l, m) \exp\left(i\left(lu + mv + \sqrt{1 - l^2 - m^2}w\right)\right) d\Omega$$

- . If we rexpress this on a spherical domain
- We get $\tilde{V}_{LM} = 4\pi i^l \tilde{B}_{LM}$
 - where L,M are spherical harmonics quantal indices
- No explicit integration!

Spherical wave harmonics transform

 To get the L,M coefficients of the visibility function requires a transform which I call the spherical wave harmonics (SWH) transform

 It amounts to multiplying the visibility with spherical wave functions x spherical harmonics

Spherical wave harmonics

CHALMERS

SWH transform applied to LOFAR single station data

Reference Allsky Model at 50MHz

Areas of Application

- Wide field imaging
 - Extended sources
 - . Far out sidelobe mapping
- Non-coplanar visibilities
 - . No w-terms to correct for
- Multipole moment calculations
- Space-borne interferometers

• Will benefit from future MIDPREP exchange with SA institutes (modeling, imaging s/w)

Thanks

•For more info see http://arxiv.org/abs/1504.04485