A New Suite of simulations for the SKA and its precursors

Ed Elson SKA postdoctoral fellow drelson.e.c@gmail.com

Astrophysics, Cosmology and Gravity Centre University of Cape Town

MAAD 2015 - MIDPREP Workshop

Outline

- SKADS: S³-SAX
- This work: sky models based on S³-SAX
- Example application
- Future plans

S³-SAX

- S³: suite of Semi-Analytic Models (SAMs) delivered as part of the SKADS in 2009.
- S³-SAX : track the cosmic evolution of HI and H₂ in ~
 3e7 galaxies.
- Based on physical models of Obreschkow et al. (2009).
- Exhaustively tested in > 100 peer-reviewed publications.
- Successfully reproduce HI masses, line profiles, TF relation, clustering & evolution characteristics.
- Used as the basis for SKA performance calculations.

S³-SAX

- Recently re-released by Obreschkow & Meyer (2014) with added optical properties.
- Catalogue contains 20 properties for each galaxy ...

South Pole -90deg

Symbol	Unit	Description
ID	_	Unique galaxy identifier in the Munich Semi-Analytic Model "DeLucia2006a"
RA	\deg	Right ascension of galaxy centre
Dec	\deg	Declination of galaxy centre
z	_	Apparent redshift of galaxy centre, including the Doppler component due to peculiar motion relative to the Hubble expansion
i	deg	Galaxy inclination defined as the smaller angle $(0^{\circ} - 90^{\circ})$ between the line-of-sight and the rotational axis of the galaxy
T	_	Numerical Hubble type $(-60$ for ellipticals, 010 for spirals, 99 for morphologically unresolved objects, mostly dwarfs)
M_*	${ m M}_{\odot}$	Stellar mass
$M_{\rm HI}$	${ m M}_{\odot}$	Mass of neutral atomic hydrogen H _I , without helium
$M_{\rm H_2}$	${ m M}_{\odot}$	Mass of molecular hydrogen H_2 , without helium
$S_{ m HI}^{ m int}$	${ m Jykms^{-1}}$	Velocity-integrated flux of the redshifted $21 \mathrm{cm}$ H I emission line, with velocity units defined in the galaxy rest-frame
$S_{\rm HI}^{\rm peak}$	Jy	Peak flux density of the H $\ensuremath{\mathtt{I}}$ emission line; typically the flux density of the 'horns'
$S_{ m CO}^{ m int}$	${ m Jykms^{-1}}$	Velocity-integrated flux of the redshifted 115.27 GHz $^{12}\mathrm{CO}(10)$ emission line, with velocity units defined in the galaxy rest-frame
$S_{ m CO}^{ m peak}$	Jy	Peak flux density of the $^{12}\mathrm{CO}(10)$ emission line; typically the flux density of the 'horns'
$W^{50}_{\rm HI}$	${\rm kms^{-1}}$	Width of the H I emission line, in galaxy rest-frame velocity units, measured at 50% of the peak flux density
$W^{20}_{\rm HI}$	${\rm kms^{-1}}$	Width of the H I emission line, in galaxy rest-frame velocity units, measured at 20% of the peak flux density
$r_{\rm HI}^{\rm edge}$	arcsec	Apparent H I radius along the major axis out to a H I disk surface density of $1 \mathrm{M_{\odot}pc^{-2}}$, corresponding to a face-on column density of $1.25 \cdot 10^{20} \mathrm{cm^{-2}}$
$r_{\rm HI}^{\rm half}$	arcsec	Apparent H _I half-mass radius along the major axis
$M_{\rm R}$	mag	Absolute Vega R -band magnitude, corrected for intrinsic dust extinction; 99 if stellar mass and star formation history are insufficiently resolved to compute $M_{\rm R}$
$m_{ m R}$	mag	Apparent Vega R -band magnitude; value 99 if no absolute magnitudes available
$r_{ m e}$	arcsec	Effective radius, here approximated as the radius containing half the stellar mass if the galaxy were viewed face-on

Table 1: Description of the columns of mock catalog in ASCII format.

Synthetic HI data cubes based on S³ - SAX:

Right Ascension (J2000)

Synthetic HI data data cubes based on S³ SAMs:

- 3D model generated for each galaxy in simulation sub-volume.
- Unique HI mass distribution, rotation curve, incl, PA, etc.

- Generate a library of > 500 000 unique 3D models of galaxies that sample the S³-SAX parameter space.
- Fully automated using custom scripts.

- Generate a library of >500 000 unique 3D models of galaxies that sample the S³-SAX parameter space.
- Fully automated using custom scripts.

- For a user specified:
 - S³-SAX sub-volume
 - cosmology
 - channel width, pixel scale
 - optical magnitude and HI flux density cuts
 - noise and beam characteristics ...

... we can produce realistic mock data products containing HI line emission (and continuum).

Ra: $12^{h} 00^{m} 29.33^{s}$ (J2000)

Applications

- Our synthetic data cubes can be used to carry out mock experiments.
- Example: **HI line stacking**
 - Useful method for probing HI content of large samples of distant galaxies ..

HI Stacking

With the poor S/N at the higher redshifts, we will rely on HI spectral stacking to recover average HI properties of galaxies in various samples...

STEP 1: extract spectra using known positions and z

STEP 2: Using known z values, shift all lines to common channel

STEP 3: Co-add spectra

$$M_{\rm HI} = \frac{236}{(1+z)} \left(\frac{S_{\rm v}}{\rm mJy}\right) \left(\frac{d_{\rm L}}{\rm Mpc}\right)^2 \left(\frac{\Delta V}{\rm km\,s^{-1}}\right)$$

Mock Parkes stacking experiment

Spatial resolution = aperture size = 15 arc min, z = 0.04 - 0.13

Significant contributions from distant neighbours (outside of aperture) and nearby neighbours (inside aperture).

Mock Parkes stacking experiment

Spatial resolution = aperture size = 15 arc min, z = 0.04 - 0.13

 Target galaxy emission constitutes only ~55% of stacked spectrum.

Mock ALFALFA stacking experiment

Spatial resolution = aperture size = 3.5 arc min, z = 0.025 - 0.05

Target galaxy emission constitutes ~ 93% of stacked spectrum.

Mock LADUMA stacking experiment

Spatial resolution 15 arc sec, aperture size = 30 arc sec, z = 0.1 - 0.15

 Target galaxy emission constitutes ~92% of stacked spectrum, yet for a much higher redshift shell (more crowding).

Applications

- Other potentially useful applications:
 - Low-mass end of HI mass function
 - Cosmic variance
 - Data reduction and/or visualization pipelines
 - Data analysis pipelines (e.g.V_{rot} modeling)
 - Calibration

Summary

- We have developed the infrastructure to convert S³-SAX catalogues into realistic mock data products.
- Our methods accurately model the spatial and spectral distribution of HI line and radio continuum emission.
- Mock experiments allow us to better interpret our SKA-era data and results.
- For more info or for some mock products: <u>drelson.e.c@gmail.com</u>