Dense Dipole Array for Mid-Frequency Aperture Arrays

D.B. Davidson & J. Gilmore

Stellenbosch University

◆□▶ ◆舂▶ ◆登▶ ◆登▶ ─ 登一

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Outline					

1 Introduction and Design Overview

2 Scanning

- 3 Feed Design
- 4 Implementation
- 5 Dual Polarization

Introduction and Design Overview I

- Starting point was Jan Noordam's "Bathmat Antenna"
- Version of Wheeler's current sheet array
- Array of dipoles placed above a ground plane
- Overlapping dipole elements:
 - Elements spaced < ^λ/₂ apart at *all* in-band frequencies.
- Bandwidth improved by:
 - Capacitive coupling between elements
 - Close proximity of elements

Introduction and Design Overview II

Results of 2 Optimizations with different goals:

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Scanning I					

Scan 1: Scan along θ with $\phi = 90^{\circ}$

E

-1

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Scanning II					

《曰》 《圖》 《臣》 《臣》 三臣

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Scanning					

S

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Scanning N	\checkmark				

Outline

2 Scanning

5 Dual Polarization

6 Conclusion

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Feed Design	1				

- Preliminary results look encouraging...but...there is an in-band resonance
- Caused by 360° current loops between neighbouring differential ports
- Frequency at which resonance occur will change with scan angle and length of feed line

Scanning

Feed

nplementatio

Dual Polarization

Conclusion

Feed Design II

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion

Feed Design III

- Solution is to try and cancel out the common-mode currents in the feed
- $\bullet\,$ Feed design by Cavallo et al. employs $2\times180^\circ$ microstrip loops on either side of a slot to cancel out common-mode currents

Sac

イロト イボト イヨト イヨト 三日

 $\bullet\,$ However, a "hard-wired" 180° is only 180° at a specific frequency

Feed Design IV

- We redesigned the feed to improve the bandwidth
- The current-loop is replaced with $2 \times$ wide-band microstrip-slotline ۲ transitions on either side of a PCB

 Instead of directly cancelling out common-mode currents, the EM-fields induced by the common-mode currents are cancelled out, and the EM-fields induced by the differential-mode currents are still allowed to propagate.

Sac

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Feed Design	n V				

Common-mode Fields:

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Design Overview Scanning Feed Implementation Dual Polarization Conclusion Feed Design VI

Differential-mode Fields:

UNIVERSITY 《ロ》《团》《토》《토》 토 / 오이

Scanning

Feed

nplementation

Dual Polarization

Conclusion

Feed Design VII

Manufactured PCB:

- Board has a height of 75mm $\left(\frac{\lambda_0}{4}\right)$ and a width of 35mm
- Will be able to provide structural support between array and ground plane.

イロト イ押ト イヨト イヨト

Scanning

Feed

mplementation

Dual Polarization

Conclusion

Feed Design VIII

Outline

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Implement	ation I				

- A 4X4 Prototype DDA (Single Pol) has been manufactured at ASTRON
- S-parameters were measured

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Design Overview Scanning Feed Implementation	Dual Polarization	Conclusion
--	-------------------	------------

Implementation II

Outline

2 Scanning

3 Feed Design

6 Conclusion

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Dual Pola	rization I				

• Optimization of the Dual Polarized DDA is currently underway

UNIVERSITEIT STELLENBOSCH UNIVERSITY

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

500

Dual Polarization II

- "Taster Results" ... No optimization and no feedboard!!
- The same rough shape as that of the single-pol is observed.

Outline

2 Scanning

- 3 Feed Design
- 4 Implementation
- 5 Dual Polarization

Design Overview	Scanning	Feed	Implementation	Dual Polarization	Conclusion
Conclusion	l				

- Design of a Dense Dipole Array (DDA) is well under way
- Bandwidth > 3:1 has been achieved over wide scan angle
- Wide-band common-mode suppressing feed has been designed and manufactured
- A 4x4 Prototype Array has been manufactured and testing is under way.
- Initial results are encouraging, but there is still quite a lot of work left!

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 \exists

- Radiation Pattern Measurement of prototype array
- Optimization of Dual-Polarized design
- Rigorous Finite Array Investigation

• ...

Scanning

Feed

nplementation

Dual Polarization

Conclusion

Acknowledgements

Thank you to our sponsors!

SEVENTH FRAMEWORK PROGRAMME This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme MIDPREP under Grant Agreement PIRSES-GA-2013-612599

