

Mid-frequency science with the SKA

Jeff Wagg SKAO UK

Robert Braun, Tyler Bourke, Jimi Green, Evan Keane MFAA all-hands meeting, Aveiro, Portugal April 20, 2015

Overview of the SKA

• Update on recent SKAO science activities

• SKA1 high priority science goals

• mid-frequency MFAA SKA2 science

Update on SKAO science activities

- June, 2014: "Advancing Astrophysics with the SKA", Giardini
 - Naxos, Italy more than 250 participants
 - 130 chapter submissions for new SKA science book to be published middle of this year
- July to August: prioritization of SKA1 science goals
 - initial set of 44 science goals submitted by 8 science working groups
 - ranking undertaken by SKAO science team
 - following review by science review panel, list of top 13 high priority science goals was formulated and published
- December: "5 years in the life" (full) SKA1 model observing schedule published

Update on SKAO science activities

• Dec., 2014 to March, 2015: involvement in consortium PDRs

• Nov. to March, 2015: rebaselining

- Coming soon: new release of Level 0s (May)
 - updated configurations for LOW and MID (July)
 - updated Level 1s (July)
 - SKA1 Key Science Project workshop in Stockholm (August)

Overview of SKA headline science (not in order of priority)

- 1) Pulsar surveys and timing
 - Does general relativity fail?
- 2) The Cradle of Life & Astrobiology
 - How do solar systems form and where could life emerge?
- 3) Galaxy Evolution and Cosmology
 - How do galaxies get their gas and form stars?
- 4) Cosmic magnetic fields
 - When did ordered magnetic fields in galaxies form?
- 5) Cosmic Dawn and the Epoch of Reionization
 - When did the first galaxies form and begin to reionize the Universe?
- 6) Radio transients and *Exploration of the Unknown*

Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- SWG priority order within each group

Science			SWG
Goal	SWG	Objective	Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
3	CD/EoR	Physics of the early universe IGM - III. HI absorption line spectra (21cm forest)	3/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
6	Pulsars	Characterising the pulsar population	2/3
7	Pulsars	Finding and using (Millisecond) Pulsars in Globular Clusters and External Galaxies	2/3
8	Pulsars	Finding pulsars in the Galactic Centre	2/3
9	Pulsars	Astrometric measurements of pulsars to enable improved tests of GR	2/3
10	Pulsars	Mapping the pulsar beam	3/3
11	Pulsars	Understanding pulsars and their environments through their interactions	3/3
12	Pulsars	Mapping the Galactic Structure	3/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
16	HI	HI absorption studies out to the highest redshifts.	4/5
17	HI	The gaseous interface and accretion physics between galaxies and the IGM	5/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
19	Transients	Accessing New Physics using Ultra-Luminous Cosmic Explosions	=1/4
20	Transients	Galaxy growth through measurements of Black Hole accretion, growth and feedback	3/4
21	Transients	Detect the Electromagnetic Counterparts to Gravitational Wave Events	4/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
23	Cradle of Life	Characterise exo-planet magnetic fields and rotational periods	2/5
24	Cradle of Life	Survey all nearby (~100 pc) stars for radio emission from technological civilizations.	3/5
25	Cradle of Life	The detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.	4/5
26	Cradle of Life	Mapping of the sub-structure and dynamics of nearby clusters using maser emission.	5/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
28	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - I.	2/5
29	Magnetism	Detection of polarised emission in Cosmic Web filaments	3/5
30	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - II.	4/5
31	Magnetism	Intrinsic properties of polarised sources	5/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
34	Cosmology	Map the dark Universe with a completely new kind of weak lensing survey - in the radio.	3/5
35	Cosmology	Dark energy & GR via power spectrum, BAO, redshift-space distortions and topology.	4/5
36	Cosmology	Test dark energy & general relativity with fore-runner of the 'billion galaxy' survey.	5/5
37	Continuum	Measure the Star formation history of the Universe (SFHU) - I. Non-thermal processes	1/8
38	Continuum	Measure the Star formation history of the Universe (SFHU) - II. Thermal processes	2/8
39	Continuum	Probe the role of black holes in galaxy evolution - I.	3/8
40	Continuum	Probe the role of black holes in galaxy evolution - II.	4/8
41	Continuum	Probe cosmic rays and magnetic fields in ICM and cosmic filaments.	5/8
42	Continuum	Study the detailed astrophysics of star-formation and accretion processes - I.	6/8
43	Continuum	Probing dark matter and the high redshift Universe with strong gravitational lensing.	7/8
44	Continuum	Legacy/Serendipity/Rare.	8/8

Highest Priority Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- Priority order within each group

Science	SWG	Objective	SWG Bank
Guai	300		
1	CD/EOR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37+38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal + Thermal processes	1+2/8

Highest Priority Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- Priority order within each group
- most science goals require frequencies below 1420 MHz

Science			SWG
Goal	SWG	Objective	Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37+38	Continuum	Star formation history of the Universe (SFHU) – I-II. Non-thermal + Thermal processes	1+2/8

Highest Priority Science Objectives

- Arranged by SWG
- Arbitrary order of SWG groups
- Priority order within each group
- most science goals require frequencies below 1420 MHz and survey speed

Science			SWG
Goal	SWG	Objective	Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37+38	Continuum	Star formation history of the Universe (SFHU) – I-II. Non-thermal + Thermal processes	1+2/8

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Cradle of Life & Astrobiology	Proto-planetary disks; imaging inside the snow/ice line (@ < 100pc), Searches for amino acids.	Proto-planetary disks; sub-AU imaging (@ < 150 pc), Studies of amino acids.	
The oracle of Life & Astrobiology	Targeted SETI: airport radar 10^4 nearby stars.	Ultra-sensitive SETI: airport radar 10^5 nearby star, TV ~10 stars.	
Strong-field Tests of Gravity with	1st detection of nHz-stochastic gravitational wave background.	Gravitational wave astronomy of discrete sources: constraining galaxy evolution, cosmological GWs and cosmic strings.	
Pulsars and Black Holes	Discover and use NS-NS and PSR-BH binaries to provide the best tests of gravity theories and General Relativity.	Find all ~40,000 visible pulsars in the Galaxy, use the most relativistic systems to test cosmic censorship and the no-hair theorem.	1900
The Origin and Evolution of Cosmic	The role of magnetism from sub-galactic to Cosmic Web scales, the RM-grid @ 300/deg2.	The origin and amplification of cosmic magnetic fields, the RM-grid @ 5000/deg2.	A CON
Magnetism	Faraday tomography of extended sources, 100pc resolution at 14Mpc, 1 kpc @ $z \approx 0.04$.	Faraday tomography of extended sources, 100pc resolution at 50Mpc, 1 kpc @ $z \approx 0.13$.	
Galaxy Evolution probed by Neutral	Gas properties of 10^7 galaxies, $\langle z \rangle \approx 0.3$, evolution to $z \approx 1$, BAO complement to Euclid.	Gas properties of 10^9 galaxies, <z> ≈ 1, evolution to z ≈ 5, world-class precision cosmology.</z>	Charles P
Hydrogen	Detailed interstellar medium of nearby galaxies (3 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	Detailed interstellar medium of nearby galaxies (10 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Cradle of Life & Astrobiology	Proto-planetary disks; imaging inside the snow/ice line (@ < 100pc), Searches for amino acids.	Proto-planetary disks; sub-AU imaging (@ < 150 pc), Studies of amino acids.	
The oracle of Life & Astrobiology	Targeted SETI: airport radar 10^4 nearby stars.	Ultra-sensitive SETI: airport radar 10^5 nearby star, TV ~10 stars.	
Strong-field Tests of Gravity with	1st detection of nHz-stochastic gravitational wave background.	Gravitational wave astronomy of discrete sources: constraining galaxy evolution, cosmological GWs and cosmic strings.	
Pulsars and Black Holes	Discover and use NS-NS and PSR-BH binaries to provide the best tests of gravity theories and General Relativity.	Find all ~40,000 visible pulsars in the Galaxy, use the most relativistic systems to test cosmic censorship and the no-hair theorem.	
The Origin and Evolution of Cosmic	The role of magnetism from sub-galactic to Cosmic Web scales, the RM-grid @ 300/deg2.	The origin and amplification of cosmic magnetic fields, the RM-grid @ 5000/deg2.	
Magnetism	Faraday tomography of extended sources, 100pc resolution at 14Mpc, 1 kpc @ $z \approx 0.04$.	Faraday tomography of extended sources, 100pc resolution at 50Mpc, 1 kpc @ $z \approx 0.13$.	Mrs. All
Galaxy Evolution probed by Neutral	Gas properties of 10 ⁷ galaxies, $\langle z \rangle \approx 0.3$, evolution to $z \approx 1$, BAO complement to Euclid.	Gas properties of 10^9 galaxies, <z> ≈ 1, evolution to z ≈ 5, world-class precision cosmology.</z>	1 And
Hydrogen	Detailed interstellar medium of nearby galaxies (3 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	Detailed interstellar medium of nearby galaxies (10 Mpc) at 50pc resolution, diffuse IGM down to N_H < 10^17 at 1 kpc.	

Requires mid-frequency survey speed

Headline Science with SKA1 and SKA2

	SKA1	SKA2	
The Transient Padie Sky	Use fast radio bursts to uncover the missing "normal" matter in the universe.	Fast radio bursts as unique probes of fundamental cosmological parameters and intergalactic magnetic fields.	Mas
	Study feedback from the most energetic cosmic explosions and the disruption of stars by super-massive black holes.	Exploring the unknown: new exotic astrophysical phenomena in discovery phase space.	
Galaxy Evolution probed in the Radio	Star formation rates (10 M_Sun/yr to $z \sim 4$).	Star formation rates (10 M_Sun/yr to z ~ 10).	
Continuum	Resolved star formation astrophysics (sub-kpc active regions at z ~ 1).	Resolved star formation astrophysics (sub- kpc active regions at z ~ 6).	
Cosmology & Dark Energy	Constraints on DE, modified gravity, the distribution & evolution of matter on super- horizon scales: competitive to Euclid.	Constraints on DE, modified gravity, the distribution & evolution of matter on super- horizon scales: redefines state-of-art.	
	Primordial non-Gaussianity and the matter dipole: 2x Euclid.	Primordial non-Gaussianity and the matter dipole: 10x Euclid.	
Cosmic Dawn and the Epoch of	Direct imaging of EoR structures (z = 6 - 12).	Direct imaging of Cosmic Dawn structures (z = 12 - 30).	0
Reionization	Power spectra of Cosmic Dawn down to arcmin scales, possible imaging at 10 arcmin.	First glimpse of the Dark Ages (z > 30).	. 30

Requires mid-frequency survey speed

Pulsar surveys and timing

- cosmic lighthouses
- masses: $\sim 1.4 \text{ M}_{\odot}$ within 20km
- $B \sim 4.4 \times 10^{13}$ Gauss
- periods: 1.4ms to 8.5s

<u>SKA1 MID: >350 MHz</u>

- timing precision increase by $\sim 100x$
- discovery of exotic pulsars and binaries: PSR-BH

Current estimates are that 100% of the Galactic population will accessible with SKA2

(Cordes et al. 2004; Kramer et al. 2004; Smits et al. 2009; Pulsar SWG)

- ~30,000 normal pulsars
- ~2,000 millisecond psrs
- ~100 relativistic binaries
- first pulsars in Galactic Centre
- first extragalactic pulsars

Pulsar surveys and timing: testing general relativity

- millisecond pulsars are very precise astrophysical clocks, eg:
 PSR B1937+21, period = 1.5578064688197945 +/- 0.0000000000000004
- Timing residuals between ms pulsars can be used to directly detect the gravitational wave background (SMBH mergers)

Images courtesy of Tom Oosterloo (HI science working group)

• How do galaxies interact with the surrounding `Cosmic Web' (feeding and feedback)

SKA1 will probe low column density HI in nearby Universe $(n_{HI} \sim 10^{18} \text{ cm}^{-2})$

HI Cosmology with SKA: Baryon Acoustic Oscillations

• Constraining Dark Energy models with redshift-resolved BAO measurements as a "cosmic ruler"

HI Cosmology with SKA: Baryon Acoustic Oscillations

• Constraining Dark Energy models with redshift-resolved BAO measurements as a "cosmic ruler"

HI Cosmology with SKA: Baryon Acoustic Oscillations

• Reduced uncertainty on the *dilation factor* which depends on the evolution of dark energy

Headline Magnetism Science

 3D magnetic tomography of the Galaxy and distant universe; from current 1 RM deg⁻², SKA1: 300 deg⁻² to SKA2: 5000 deg⁻² (Johnston-Hollitt et al. 2015)

The transient radio sky: exploring the unknown

- More than 10 "FRB" events now detected (after first "Lorimer" burst):
 - $S = 0.5 1.3 Jy, \Delta t = 1 6 msec, DM = 550 1100 cm^{-3} pc$
- Estimated event rate: 1x10⁴ sky⁻¹ day⁻¹
- Completely unknown origin, possibly at cosmological distances

Fast Radio Bursts as a cosmological probe?

DM [pc cm⁻³]

• large samples (~1000) of spectroscopically identified FRBs may provide a means of probing the missing baryons

SKA Science

The SKA will revolutionise our understanding of the Universe and the laws of fundamental physics

http://astronomers.skatelescope.org/

redita and anknowladgementa: Dyrgovski et al. (Catach) (Folit maga). Canay Bos Main image): NASA/JPL-Celtech/SSG (Calaxy exclution mage-AGG 318D Faild). ASA/Saunton4.cosheed matute tor Space Researchit: TAAD: Item