

MONITORING WATER MASERS in star-forming regions

Empirical results

Jan Brand

Istituto di Radioastronomia, Bologna Italy

Collaborators

INAF-Arcetri (Florence)
Cesaroni, Comoretto, Felli, Palla, Valdettaro

IRA-CNR/INAF - Section Florence Palagi

Various ways to monitor

Statistics

Many sources, only once: Wouterloot et al. 1995

Fewer sources, repeatedly: Arcetri/Bologna; Pushchino

Statistics & Individual object-studies

Wide range in L_{bo}: Valdettaro et al. 2002; Brand et al. 2003

Narrow range in L_{bol}: Wilking et al. 1994; Furuya et al. 2003

High time-resolution: Boboltz et al. 1998; Liljeström & Gwinn 2000

High frequency resolution: Boboltz et al. 1998

Observations

Since 1987 4-5 observations/yr

Sample of 53 YSOs; first analysis on 14.

 $T_{\text{sys}} \approx 120 \text{ K}$ $\eta \approx 30\%$ AC, 1024 channels, 10 MHz band [0.132 km/s]

Medicina 32-m

Time sequences maser emission

W43 Main3

How to organize and display 10-15 years of data?

Ways of managing & studying the data

→ Flux density F as function of V, t overall description maser activity; visual identification possible velocity-drifts

Flux density - Velocity - Time diagrams INAF

Flux density - Velocity - Time

Ways of managing & studying the data

- →Flux density F as function of V, t
- →Integrated flux density 5 as function of time describes variation of total maser emission
- → Upper & Lower envelopes

Shows maximum & minimum signal detected in each channel during monitoring period (5σ -level).

What maser spectrum would look like *if* all velocity components were to emit at their maximum/minimum level and at the same time.

Lower envelope

Ways of managing & studying the data

- →Flux density F as function of V, t
- >Integrated flux density 5 as function of time
- →Upper & Lower envelopes
- → Frequency-of-occurrence histogram percentage of time flux density in a channel was greater than 5σ -level

Lower envelope

velocity (km/s)

Frequency-of-occurrence histogram

Ways of managing & studying the data

- →Flux density F as function of V, t
- >Integrated flux density S as function of time
- →Upper & Lower envelopes
- >Frequency-of-occurrence histogram
- → Potential maximum maser luminosity L_{H2O}^{up}
 Integral of upper envelope;
 Maximum output source could produce *if* all velocity components were to emit *at their maximum level* and *at the same time*
- → Actually observed maximum maser luminosity L_{H2O}^{max}
 Derived from spectrum with highest 5
- First, second moment of upper envelope, V_{up} , ΔV_{up} average velocity, weighted by flux density similarly: V_{fr} and ΔV_{fr}

Maser- vs- YSO luminosity

Maser velocity

 $V_{up} \approx V_{fr} \rightarrow$ most intense where most often

 $V_{up} - V_{cl} = -0.4 \pm 3.5 \rightarrow max$. emission for zero projected velo: maser emission max. when plane of shock along l.o.s.

Maser variability index

Smax / Smean

High-luminosity sources tend to be associated with more stable masers

Low-luminosity YSOs: fewer maser components excited; intrinsic time-variability dominates output.

High-luminosity YSOs: larger number of components simultaneously excited; effect of individual time-variability reduced.

AND: lower L_{FIR} YSOs may work closer to threshold conditions, hence more unstable emission.

Maser velocity range

More luminous YSOs can excite maser emission over larger velocity range, but does not necessarily always do so.

Distribution velocity components

Higher maser power goes into more emission channels, that are spread over a larger range in velocity.

Velocity drifts & bursts

VLBI: 3 types of maser comps.

- >> In rotating disk around YSO
- >> In hi-velo collimated outflow perpendicular to disk
- At bow shocks produced by outflows

Analyzed 15 components for velo-drifts:

Gradients between 0.02 and 1.8 km/s/yr 9/15 negative, 6/15 positive

Analyzed 14 bursts in 9 components in 6 sources:

 ΔF = 40 - >1840%; Δt = 63 - ~900 days ΔF , Δt smaller at large velocities from V_{cloud}

"Super variability"

Sh 2-184

Sh 2-269

by turbulent motions of molecular cloud?

 $3 \times 10^4 L_{\odot}$

· Upper envelope

Lower envelope

Only high-luminosity YSOs (L_{FIR} above 3 x 10⁴ L_{\odot}) are capable of maintaining certain level of emission at given velocity for extended periods of time.

Aspects of upper envelopes may reflect 3 different regimes of maser excitation

→ L > 3 × 10^4 L_{\odot}:

Maser always detected Velocity range increases with L_{FTR} .

Steep decline histograms:

the more blue- & red-shifted components have shorter lifetimes than components near cloud velocity

Tails in histograms:

Info on outflow orientation

CONCLUSIONS

- Mean velocity of maser emission close to V_{cloud}
- Maser emission is strongest where it also occurs most often
- $L_{H_2O}^{up} \propto L_{FIR}^{0.81 \pm 0.07}$
- High-luminosity sources associated with more stable masers
- Higher maser power goes into more emission channels, that are spread over a larger range in velocity
- Isolated component analysis shows occasional velocity-drifts;
 find both acceleration and deceleration (0.02 1.8 km/s/yr)
- Masers-bursts: 60 900 days duration. Flux density incease 40 - ≥1840%
- Several masers show "super-variability" on scales of 5-12 yrs

CONCLUSIONS, cont'd

■ $L_{FIR} \approx 3 \times 10^4 L_{\odot}$ defines a threshold:

 $L_{FIR} \geq 3 \times 10^4 \, L_{\odot}$ at least one maser comp. always present at 1-20% level; $V \approx$ upper envelope peak, $\approx V_{cloud}$ Below $\leq 430 \, L_{\odot}$ maser not detectable most of time

 $lue{}$ There are 3 regimes of maser excitation, function of L_{FIR} :

 $L_{FIR} < 4 \times 10^2 \, L_{\odot}$ and $4 \times 10^2 \, L_{\odot} \le L_{FIR} \le 6 \times 10^4 \, L_{\odot}$ maser excitation depends mostly on strength outflow and density surrounding molecular cloud

 $L_{FIR} \ge 6 \times 10^4 \, L_{\odot} \, YSO$ -luminosity is determining factor

Maser emission is function not only of YSO-luminosity but also of beaming properties outflow w.r.t. observer

Read about it in Valdettaro et al., 2002, A&A 383, 244 Brand et al., 2003, A&A 573, 587