Chemical Evolution of Protostars

Michiel Hogerheijde

Leiden Observatory

Outline

- Introduction
 - Molecules as probes and signposts
 - ◆ Chemical processes
- Evolution of the chemistry
 - ◆ From diffuse to dark clouds
 - → ...to dense cores
 - ◆ ...to stars, jets, and disks
- Summary and outlook

Introduction

- Molecular lines are powerful probes of physical conditions
 - ◆ Excitation analysis
 - Velocity profiles
 - ◆ Chemical abundances
- We need to understand the chemistry to know
 - which region is traced
 - use abundances as *clocks* or *signposts* for processes

Chemical Processes

- Gas-phase chemistry
 - ◆ Two-body reactions
 - ◆ Ion-neutral reactions much more efficient than neutral-neutral
- *Chemical* time scales often comparable to *dynamical* time scales: no steady state!
- Chemical reactions in on grains allow different pathways
 - Hydrogenation
 - Activation barriers

Formation and Destruction

$$X+Y \square XY^* \square XY+\square$$

Radiative Association

$$X+YZ \square XY+Z$$

 $X^++YZ \square XY^++Z$

Neutral-neutral and ionneutral reactions

$$X+e \begin{bmatrix} X^-+ \end{bmatrix}$$

 $X^-+Y \begin{bmatrix} XY+e \end{bmatrix}$

Associative Detachment

Photodissociation

 $X+g:Y \square X:g:Y \square g:XY \square g+XY$

Grain-surface reactions

Many chemical pathways start with CR-formation of H_3^+

$$H_2+CR \square H_2^++e$$
 $H_2^++H_2 \square H_3^++H$

$$H_3^++CO \square HCO^++H_2$$

 $H_3^++N_2 \square N_2H^++H_2$

Deuterium-exchange leads to high levels of deuteration in cold gas, >10⁴ over cosmic

$$H_3^+$$
+HD \rightleftharpoons H_2D^+ + H_2

20 K

Modeling the chemistry

- Gas-phase reaction networks
 - E.g., UMIST rate99
 - ◆ 4000 reactions, 400 species, 12 elements
 - www.rate99.co.uk
- Include grains-surface reactions
 - Need to know sticking probability
 - Need to know desorption mechanisms
- Time dependent models (fixed depth)
- Depth dependent models (steady state)
- Combined approach within hydrodynamical framework (e.g., Markwick et al. 2002)

Diffuse Clouds

- A_V~few magnitudes
- Densities < few thousand H₂ cm⁻³
- Poorly shielded against UV
- Abundances in general well explained by standard ion-molecule chemistry (Turner et al. 1998)
- Except NH₃, H₂CO, H₂S
 - ◆ Formed on grains?
 - Desorption mechanism?
- Except CH₄, HCO⁺
 - Shocks? Turbulence?

(Hogerheijde et al. 1995)

Dark Molecular Clouds

- \blacksquare A_V> a few magnitudes
- Larger densities
- Lower temperatures
- Species shielded against UV
 - ◆ More complex species, carbon chains
 - Chemical gradients
 - ◆ Evolution?
 - Density?
 - Hydrodynamics, turbulence?

Longevity (>free-fall time) of molecular clouds challenged by Hartmann et al. (2001)

-Quick formation of H₂ (on grains)?

Dark Clouds and GMCs

- Two types of clouds
 - ◆ Dark molecular clouds ($M < 10^4 M_{\odot}$)
 - Giant Molecular Clouds($M > 10^5 M_{\odot}$)
- Different star-formation environments
 - ◆ Isolated low-mass stars (Taurus)
 - Rich clusters of many low-mass and a few high mass stars (Orion/Trapezium)
 - ◆ Intermediate environments?

Depletion

- Gas phase molecules can stick onto grains
- Inside dark cloud condensations, densities increase and temperatures drop
- Resulting freeze-out time scale < dynamical time scale of the core
- Many species disappear from the gas phase

L1498 – starless core

(Kuiper et al. 1996)

Late depleter: N₂H⁺

$$H_3^+ + N_2 \square N_2 H^+ + H$$

$$N_2H^++CO \square N_2+HCO^+$$

 $N_2H^++H_2O \square N_2+H_3O^+$

- ◆CR can penetrate deep into cloud
- •H₃+ remains abundant
- •N₂ not *thought* to deplete
- •CO and H₂O deplete
- •N₂H⁺ abundant

Depletion leads to deuteration

 $H_3^+ + HD \iff H_2D^+ + H_2$

ND₃ in NGC1333 IRAS4

 $NH_3/ND_3=1000$ \square D/H=0.15

(van der Tak et al. 2002)

Near young star, ices evaporate

>20 K for CO >90 K for H₂O

'Drop' abundances (Jørgensen et al. 2004)

Successfully explain abundances of species toward deeply embedded and more evolved *low-mass* stars

Jump vs Drop models

van der Tak et al. (2000); Jørgensen et al. (2004)

Outflows

- All low-mass stars drive outflows
- Shocks and/or advection heats material
 - ◆ Shock tracers: SiO, SO, SO₂
 - ◆ Warm-gas tracers: HCN, CH₃OH

(Jørgensen et al. 2004)

Massive star formation

- Much less well understood than low-mass star formation
 - ◆ Occurs deep inside clouds
 - ◆ Typically further away
 - Confusing regions
- Luminosity much higher
 - ◆ Earliest appearance as hot core
 - ◆ Chemical clocks
 - ◆ Later stages: photodissociation: UCHIIs, etc.

IR absorption by ices – surface & UV chemistry

W33A – Gibb et al.(2000)

Protoplanetary disks

- Low-mass stars (and maybe higher mass stars too) often surrounded by disks.
- 'Miniature' versions of chemistry
 - ◆ Depletion in dense and cold midplane
 - ◆ Evaporation of ice mantles close to star
 - ◆ Photochemistry in 'atmosphere'
- Line emission typically traces warm layers at intermediate height, but no limits on vertical, radial mixing

Models of circumstellar disks

LkCa15

(Qi 2001)

B = C + accretion UVC = 4000 K black body

CN / HCN ratio traces stellar UV spectrum = accretion activity

van Zadelhoff et al. (2003)

Summary

- Competing processes of
 - ◆ Photodissociation
 - ◆ Chemistry
 - ◆ Depletion
 - ◆ Evaporation
- Differences in luminosity lead to very different *apparent* chemistries between high and low-mass stars

Outlook

- Much has been learned from submillimeter instruments such as JCMT, CSO, OVRO, BIMA, PdBI
- APEX, SMA, e-SMA, CARMA, and ultimately ALMA will further our knowledge
- *Higher excitation* regimes become more easily available: warmer, denser gas traced
- *Higher angular resolutions* will resolve disks around low-mass stars and the complex environs of high-mass stars