Natural spacecraft "Moon", payload used for monitoring Sun,solar wind and the diffrent region of magnetosphere.

> Hanna Rothkaehl Space Research Center olish Academy of Sciences

# Wave diagnostics



LF ion plasma diagnostics, E B field fluctuations.

VLF low density plasma diagnostics

HF electron plasma diagnostics, Solar radio burst.

#### Experience

#### past experiment -RF diagnostics

| IK-19<br>1978-1981                  | 500-980 Km<br>inc. 74 deg    | 0.1-6. MHz HF   |  |
|-------------------------------------|------------------------------|-----------------|--|
| IK-24 Activny<br>1989-1990          | 500-2500 Km<br>inc. 82.5 deg | 0.1- 10. MHz HF |  |
| IK-25 Apex<br>Magion-3<br>1991-1992 | 430-3100 Km<br>inc. 82.5 deg | 0.1-10. MHz HF  |  |
| Coronas-I<br>1994                   | 500 Km<br>inc. 82.5 deg      | 0.1-30. MHz HF  |  |
|                                     | A CARLES                     |                 |  |







## **CORONAS I**



March 2, 1994. The satellite had on the board Solar Radio Spectrometer (SORS) to measure radio and plasma noise electric fields 0.1-300 MHz, 20-300 MHz magnetic field, Impedance probe, active ionosonde sounding. The HF measurements were performed with dipole antenna 15 m long from tip- to-tip within the range of 0.1-30 MHz with 25 kHz step and 15 kHz passband. Consecutive spectra were registered every 30 s. with sweep period 6.4s each.

•CORONAS-I launched

on

#### **COMPASS 2**

SRC PAS IRF-u IZMIRAN



weighting 85 kg, circular
orbit with height 400 km and inclination 79 degrees for
development of the methods
of monitoring and forecasting of natural disasters on the base of
coordinated monitoring at
the Earth and from space
the pre-earthquake
phenomena.





| Table 2-1 Instrument main characteristic |                               |  |  |
|------------------------------------------|-------------------------------|--|--|
| Parameter                                | Value                         |  |  |
| General                                  |                               |  |  |
| Mass [kg]                                | 2.1 (+10% / - 30 %)           |  |  |
| Power [W]                                | 6.5 (+20% / - 30 %)           |  |  |
| Voltage [V]                              | 28.0 ( +/- 4 [V])             |  |  |
| Dimension [mm]                           | 190.0x150.0x90.0 (TBC)        |  |  |
| Functional                               |                               |  |  |
| Frequency range                          | 100.0 [kHz] to 15.0 [MHz]     |  |  |
| Spectrum resolution                      | 10.0 [kHz] (0.1 to 1.0 MHz)   |  |  |
|                                          | 100.0 [kHz] (1.0 to 15.0 MHz) |  |  |
| Dynamic range [dB]                       | 70.0 (TBC)                    |  |  |
|                                          |                               |  |  |
| Operational                              |                               |  |  |
| Discrete commands                        | NONE                          |  |  |
| TC stream                                | NONE                          |  |  |
| TC packet length                         | 0 bytes                       |  |  |
| TM stream                                | $\sim$ 2 packets / sec        |  |  |
| TM packet length                         | 120 byte ( 960 bits)          |  |  |
| Internal memory buffer                   | 256 kB                        |  |  |
|                                          | (about 1 hours of measurement |  |  |
|                                          | without TM dump)              |  |  |

### **OBSTANOVKA ISS**

#### Wave Recorder concept



#### Vector Digital Receiver concept







# Sun

Classification of solar radio bursts





Cluster

Figure 1.3. The 1997 December 12 complex type III burst that started below about 7 MHz but was very intense at kilometric wavelengths (from Gopalswamy et al. 2000).





- Salar Imagaa SEC & SOUOLACE SUITIONES V. corr & SatEart DST from WDC C2

### Magnetosphere



Plasma Sheet Plasma Mantle Magnetopause

#### **Bow Shock**

Plasma instability, diagnostic of evolution magnetospheric plasma during geomagnetic storm, define the position of boundary layers

## Turbulence diagnostics magnetosheat



**Classical electric** field measurements Lunar ionosphere as laboratory of different type plasma instability and LOIS new challenges

#### Magnetopause

#### **Bow Shock**





### Two point diagnostic



## Energetic Neutral Atoms (ENAs): diagnostics on the Moon



#### Scientific background:

Species: H, D, He, O, C, Na, K... Sources (from charge exchange with plasma populations): - LISM (Local InterStellar Matter) - Heliospheric Interface (Heliosheath) - Inner solar system (dust) - Sun (Neutral Solar Wind) - Magnetosphere and Exosphere - Moon Energy range: eV – few KeV, distribution functions depend on the source What do we know: LISM He parameters (from Ulisses), several Aspera instruments, IBEX mission (in preparation) to measure heliosheath population

# **IBEX – NASA mission**



### Instrument on the Moon

#### Advantages:

- long-term diagnostics: full coverage of the solar cycle
- energy/mass resolution in a large energy window
- possible large aperture and detector area
- Objectives:
  - to determine elemental composition of LISM's and heliospheric ENAs
  - to obtain characteristics of the distribution functions of ENAs
  - to employ neutrals for monitoring magnetospheric tail plasma

## Experience



- NeutralGAS on Ulysses (PI: M. Witte MPAe, M. Banaszkiewicz – data interpretation)
- GAS on Relikt2 (not launched) 2 instruments (M. Hlond, M. Banaszkiewicz)
- IBEX M. Bzowski (SRC) is a Polish co-I
  - 30 years of experience in modeling neutral populations in the solar system (prof. S. Grzedzielski and his group)



Thank You !