

FIR/submm astronomy: science, observatories, and perspectives for lunar observatory

Prof. Jürgen Stutzki

I. Physikalisches Institut der Universität zu Köln Kölner Observatorium für Submm-Astronomie (KOSMA)

Co-PI Heterodyne Instrument for the Far-Infrared (HIFI)/ ESA cornerstone mission Herschel

Co-PI German Receiver for Astronomy at Terahertz frequencies (GREAT), SOFIA Terahertz Array Receiver (STAR) Stratospheric Observatory for Infrared Astronomy (SOFIA)

PI NANTEN2/KOSMA Submm Observatory, Pampa la Bola, Chile

J. Stutzki, KOSMA

Lunar Observatories, Page 1

Nov. 23dr, 2006

the electromagnetic spectrum: the Far-IR spectral range

- science topics
- astronomy and instrumentation

present missions: operational and/or implemented

- ground: APEX, NANTEN2, ALMA
- airborne: SOFIA
- spaceborne: Herschel

perspectives and limitations

- the angular resolution gap -> interferometry
- mission studies:
 - Dome C/A Antarctica
 - FIRI/ESPRIT

Summary

the electromagnetic spectrum: the Far-IR spectral range

- science topics
- astronomy and instrumentation
- present missions: operational and/or implemented
 - ground: APEX, NANTEN2, ALMA
 - airborne: SOFIA
 - spaceborne: Herschel
- perspectives and limitations
 - the angular resolution gap -> interferometry
 - mission studies:
 - Dome C/A Antarctica FIRI/ESPRIT
- Summary

Astrophysics across the electromagnetic spectrum

Astrophysics across the electromagnetic spectrum

astrophysical motivation:

- the cosmos is cold: emission peaks in the submm/FIR
 - local/Galaxy: molecular clouds, star formation, dusty disks, planets, stellar envelopes,
 - global: active galaxies, galaxy evolution, cosmology (high-z galaxies, cosmic background)
- the submm/IR has a high density in spectral characteristics
 - atoms (neutral and ions): fine-structure lines, molecules: rotational and ro-vibrational lines, solid state: broad spectral features (silicates, ices), dust emission
- submm- and FIR-radiation penetrates clouds throughout a galaxy, offers view into galactic nuclei
- redshift: emission of distant, i.e. cosmologically young, objects shifted into submm-/FIR

census of early, i.e. distant, galaxies

- broad band flux, spectral energy distribution
 - high angular resolving power with bolometer detectors
- follow up line observations (strongest cooling lines)
 - line fluxes: imaging spectroscopy at moderate spectral resolution
- galaxy evolution: tracing the physical and chemical conditions of the interstellar medium
 - multi-line studies, kinematic and dynamic information
 - high sensitivity and moderate to high spectral resolution
- formation of stars and planetary systems
 - physical and chemical status of proto-planetary disks (dust and gas)
 - ultimate angular resolving power and sensitivity
- instrument/telescope boundary conditions:
 - direct detection: large and cold telescopes
 - incoherent detection: multi-element interferometer with large collection area

incoherent (direct) detection

two fundamental detection methods: incoherent (direct)

Filter Amplifier Detector Integrator Signal $P \rightarrow i$ G $\Delta \nu$ Detectors: 🗕 Tune Transmission Θ CB VF f(E)Semiconductor Bolometer Photoconductor Filter

Filter: pre-detection

- Fabry-Perot
- Grating, etc.

Detector:

- intrinsic or extrinsic photoconductor
- bolometer

submm- und far-IR spectral range/ detectors and instruments

and • coherent (heterodyne) detection

Local Oscillator:

- FIR-Laser
- Carcinotron, BWO
- •solid-state multiplier chain
- Quantum Cascade Laser

Mixer: (non-linear element)

- quantum mixer: SIS-junction
- quantum mixer: Hot Electron
 Bolometer

$$V_{non-lin} \ll \frac{h\nu}{e} = \frac{\nu_{GHz}}{242.83} mV$$

Backend: (Filter, post-detection)

- digital correlator
- acousto-optical spectrometer
- digital Fourier transform spectrometer

direct vs. heterodyne detection

direct detection: photon shot noise (background limited)

- background limited: requires cold telescope
- multi element interferometry challenging: pre-detection interference
- heterodyne detection: quantum limit (phase coherence)
 - close to fundamental limit of sensitivity (quantum limit)
 - multi-element interferometry with large collection area feasible (post detection interference)

fundamental physics and state-of-the-art-detector performance give:

- crossover resolution (break-even in sensitivity)
- in the far-IR: at about 30 km/s line width

Both technologies by now can do **spectral imaging** (3D data cubes) Science areas:

- global emission from galaxies (continuum and line):
 - direct detection
- galaxy dynamics and structure; interstellalr medium; star formation
 - heterodyne detectiond

EIE/

NGC 4038/39 "Antennae": Star Formation Triggered in Interaction Zone

SOFIA THz Array Receiver: STAR (Graf et al.) 16 pixel (receivers) integrated optics concept

Lunar Observatories , Page 12

beam rotator

Nov. 23rd, 2006

technological progress: heterodyne sensitivities

FIR/submm astronomy: science, observatories, and perspectives

the electromagnetic spectrum: the Far-IR spectral range

- science topics
- astronomy and instrumentation

present missions: operational and/or implemented

- ground: APEX, NANTEN2, ALMA
- airborne: SOFIA
- spaceborne: Herschel
- perspectives and limitations
 - the angular resolution gap -> interferometry
 - mission studies:
 - Dome C/A Antarctica FIRI/ESPRIT
- Summary

Ground Based submm/FIR

APEX

12 m telescope

best ground based site (beyond Antartica): Chile: Atacama: **Chajnantor Plateau &** Pampa la Bola **Future: Chajnantor Summit**

ALMA 64 element submm interferometer

KOSMA/ NANTEN

CCAT 25 m telescope Lunar Observatories , Page 15 on Chajnantor summit

J. Stutzki, KOSMA

Nov. 23rd, 2006

Open Port Cavity

SOFIA: roll-out after painting (Waco: Oct. 2006)

SOFIA is alive again, pending final budget decision by Congress end of November

J. Stutzki, KOSMA

Lunar Observatories, Page 17

SOFIA: Stratospheric Observatory for Infrared Astronomy

SOFIA: Stratospheric Observatory for Infrared Astronomy

Herschel: ESA cornerstone no. 4: FIR-astronomy space mission

Herschel spacecraft

\	telescope diameter	3.5 m
\	telescope WFE	< 6 µm
\	telescope temp	< 90 K
\	telescope emissivity	< 4%
~	abs/rel pointg (68%)	< 3.7" / 0.3"
\	science instruments	3
\	science data rate	130 kbps
\	cryostat lifetime	4.0±0.4 years
	height / width	~ 7.5 / 4 m
\	launch mass	~ 3200 kg
	power	~ 1500 W
	orbit 'large' Lissajo	ous around L2

- solar aspect angle
 60-120 deg
- Iauncher (w Planck) Ariane 5 ECA

Herschel hardware

Herschel: Launch and orbit

FIR/submm astronomy: science, observatories, and perspectives

the electromagnetic spectrum: the Far-IR spectral range

- science topics
- astronomy and instrumentation

present missions: operational and/or implemented

- ground: APEX, NANTEN2, ALMA
- airborne: SOFIA
- spaceborne: Herschel

perspectives and limitations

- the angular resolution gap -> interferometry
- mission studies:
 - Dome C/A Antarctica FIRI/ESPRIT
- Summary

Airborne observatories provide temporal continuity and wide spectral coverage, complementing other facilities.

The Far-IR Spatial Resolution Gap: Interferometry

FIRI/ESPRIT: Far-IR Imager Mission study

ESPRIT = mission concept for a free-flying sub-millimetre and farinfrared heterodyne space interferometer

"Exploratory Space Submm Radio Interferometric Telescope"

Telescopes: N - 6; free-flying			
Felescope size	: ~ >3.5 m		
Femperature	: ambient (90K)		
Proj. Baselines	: - 7- 200 - 1000 m		
Freq. range in	: 0.5-6 THz (600-50 µr		
nst. Bandw.	: ~ >4 GHz		
Angular Res.	: 0.02 arcsec (@100 µm)		
Spectr. Res.	: I Km/s (@100 µm)		

μm)

FIRI/ESPRIT Science objectives

.2 Billion Miles

A. Complementary to ALMA:

- Different frequency range > 950 GHz (ALMA)
- No atmosphere hindering in phase and transmission
- B. Imaging water and molecular ions in star forming regions and proto-stellar/proto-planetary disks: H2O, OH, OH+, CH, CH+, CH2+, CH3+,
- C. Imaging in important atomic fine-structure lines: CII, NII, OI, OIII,

Imaging in high excitation lines of CO, HCN, HCO⁺, etc D. Follow-up on ISO-LWS, SWAS, ODIN, Herschel,...

Interferometer element linking

Free flying Interferometer-elements linking requirements:

- 1. Optical metrology for position determination
- 2. Signal transport between elements for correlation 3. Locking of all the LOs (reference distribution)
- 3. Locking of all the LOs (reference distribution)

Design goal is to have all three functions carried out by optical means, using same optical components.

Antartic: Dome C Exploration

pro: excellent atmosphere low ambient temperature

but: challenging logistics

FIR astronomy:

- unique and competitive science goals
- detector, instrument and telescope technologies make rapid progress
- next step: interferometry (incoherent/coherent)

broad band/incoherent:

- very low thermal background: spaceborne
- need for new generation of ultra-sensitive detectors

high resolution spectroscopy:

- close to fundamental sensitivity limit
- multi-element interferometry routinely performed
- **spatial resolution**: long wavelength (λ /D):
 - either large single dish telescopes needed and/or
 - multi element interferometry needed

a lunar-based FIR-observatory?

- Iow gravity allows for larger telescopes ADVANTAGE
- solid foundation allows for "easy" interferometry implementation
- thermal environment : uncritical for high spectral resolution, difficult for direct detection systems
- moderate effort in cryo-/vacuum technology
- science use case discussion shows: useful minimum configuration is
 - 6 plus interferometer elements, possibly with larger central dish.
 - each greater 6 m diameter,
- is this feasible?
- competing with opportunities in Antartic program (Dome C/A)
- competing with formation free flying space interferometer
- possible technology demonstration: submm/THz monochromatic source installed on the moon as phase reference for ALMA ????