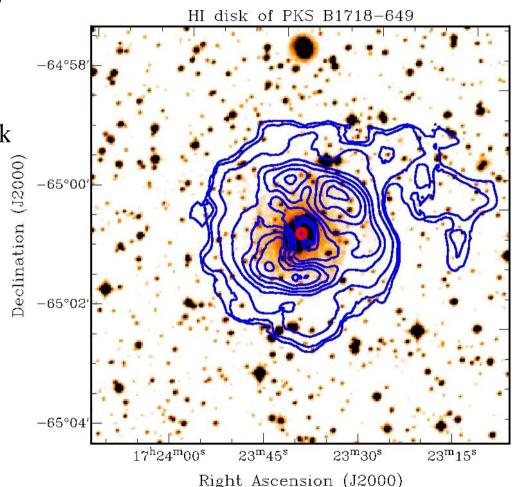
HI and the triggering of AGN: the intriguing case of PKS B1718-649

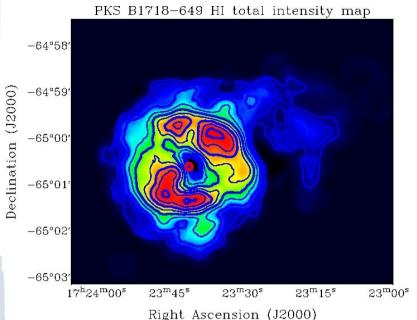
Filippo Maccagni^{1,2}, Raffaella Morganti^{1,2}, Tom Oosterloo^{1,2}, Elizabeth Mahony¹

ASTRON, Dwingeloo, The Netherlands
 Kapteyn Institute, Groningen, The Netherlands

HI in Radio AGN


- ETGs are the typical host of radio loud AGN.
- ATLAS^{3D}: in ETGs, when detected, the HI is mostly distributed in a settled configuration.
- Many HI disks may have formed from past merger or interaction events, which are also often invoked to trigger the nuclear activity.
- Problem:
 - There are young radio sources hosted by an ETG with a settled HI disk. (for example B2 0258+35, B2 0648+27)
 - The time for the HI to settle in a disk (time since the last interaction) is much larger than the lifetime of the radio activity.
 - HOW ARE THESE AGN TRIGGERED?
- Young radio sources are often more gas rich.
 - Is the neutral hydrogen important in the first phases of the radio activity?

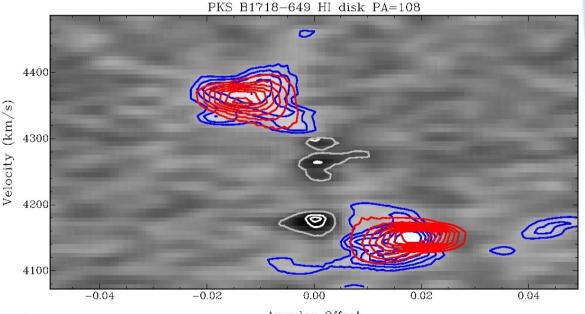
2


• The detailed study of the HI kinematics of young radio galaxies, hosted by ETGs, may give insights into their triggering.

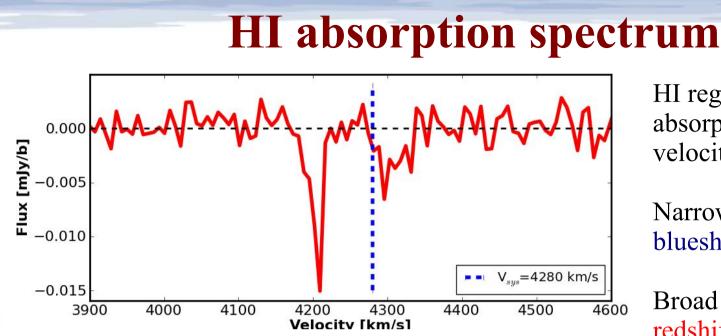
PKSB1718-649: a compact-young radio source

- VLBI observations (Tingay et al. 1997);
 - Young source: $\sim 10^{2-5}$ years
 - Closest compact source: z=0.0144
- 1995, Veron-Cetty: identified an HI disk
 - HI detected in absorption
- 2013: new ATCA observation 36 h + 24h (1995 VC observations)
- study the overall kinematics of the HI disk
 - date the last interaction event and compare it to the age of the radio source.
- understand the nature of the absorption features
 - can the HI be linked to the nuclear activity?

HI disk model



- => 'tilted ring model':
- we model a regularly rotating disk
 we identify where the observed disk diverges from the model.


$$\begin{aligned} \mathbf{R} &\sim 17 \mathrm{kpc}(1') \rightarrow t_{\mathrm{dyn}} \sim 8 \cdot 10^8 \mathrm{yr} \\ t_{\mathrm{dyn}} &> t_{\mathrm{radio}} (10^{2-5} \mathrm{yr}) \end{aligned}$$

The radio source has not been triggered by a merger or an accretion event

- HI in a circular disk with a central depression.
- HI mass = $1.1 \times 10^{10} M_{sun}$
- The external regions have asymmetries.
- The radius where the disk is not regularly rotating dates the last merger/accretion event:

Angular Offset

HI regularly rotating: seen in absorption at the systemic velocity.

BUT Narrow absorption line:

blueshifted

Broad absorption line: redshifted

• The absorption traces gas not regularly rotating.

- Clouds with radial motions within the disk may fall towards the inner regions of a galaxy
- Accretion from small clouds may trigger a low-Eddington efficiency AGN.
 - Radio, X-ray and Optical properties suggest PKS B1718-649 is such AGN

Line	Narrow	Broad
F_{peak} (mJy beam ⁻¹)	-14.9	-7.1
$F_{\rm abs}$ (mJy beam ⁻¹)	-35.4	-26.0
τ	0.009	0.007
$N_{\rm HI}({\rm cm}^{-2})$	$7.03 \cdot 10^{19}$	$7.74 \cdot 10^{19}$
FWZI (km/s)	43	65

Mass estimate from absorption is limited to the size of a radio source. Assuming the maximum radius of HI clouds (1 kpc):

 $> 1.4 \text{ x} 10^6 \text{ M}_{sur}$

Summary and Conclusions

- ATCA observations of PKS B1718-649 + Model of the HI kinematics:
 - The triggering of the AGN is not related with the events that formed the HI disk.
- This is observed also in other objects: e.g. Centaurus A, B2 0258+35
 - Galaxies like PKS B1718-649 are a particular class of AGN
 - Small clouds of HI in the inner regions may interact with the nucleus, triggering a low-efficiency AGN.
 - What is the link between the HI and the properties of these AGN?
- FUTURE PROSPECTS:
 - Apertif, ASKAP, Meerkat (and SKA) will reveal large samples of galaxies where the HI can be observed in detail:
 - Is it common for ETGs with HI disks to trigger in some time of their life a low-efficiency radio activity?
 - What physical parameter defines the role of the HI in the nuclear activity?