ASTRON

HI absorption to trace AGN feedback

Raffaella Morganti

ASTRON (NL) and Kapteyn Institute (Groningen)

with the help of: T. Oosterloo, C. Tadhunter, K. Gereb , F. Maccagni, Z. Paragi, J. Fogacy, E. Mahony et al.

STRON is part of the Netherlands Organisation for Scientific Research (NWO)

Monday, 17 March 14

Netherlands Institute for Radio Astronomy

Why outflows

- Using associated HI absorption to trace fast & massive AGN-driven outflows
- Establish characteristics and relevance of such outflows in the nearby Universe.
- Important for constraining theoretical models of galaxy formation/evolution
- Impact likely even more relevant at higher redshift: tasks for future surveys.

AST(RON

Why outflows in HI (and cold gas in general)

mainly by tracing ionised gas

associated to cold gas (HI and molecular)

Not expected/puzzling result → focus of many ongoing projects \rightarrow need to quantify the characteristics, occurrence & origin of outflows of cold gas

Presence of outflows in a variety of AGN recognised since long time:

Surprising findings: most of the mass in AGN-driven outflows

What we have learned so far on HI outflows from a restricted (and biased?) number of objects

promising learning ground for future large surveys

How do we find HI outflows

- Outflows identified by broad, shallow and blueshifted HI absorption wings
- Low optical depth T~0.1 0.5%; column densities of a few x 10^{21} cm^{-2} (for a T_{spin}=1000 K)
- velocities from many hundreds km/s to >1000 km/s

Improvements in technical capabilities of radio telescopes essential for the discovery

Where do we find HI outflows

A broad range of objects show HI outflow

- Powerful radio galaxies, e.g. 3C293
- Easier to be detected because of outflow components have low optical depth

but also.....

58 435 \mathcal{O} **MNR** al et Morganti Maho

Where do we find HI outflows

From ULIRG.....

Mrk 231

Large mass outflow rate from CO (Feruglio et al. 2010) HI outflow (less massive ~10 M_{sun}/yr)

CO detection PdBI

0.005 Mrk231 WSRT 0.000 martin Mrk 231 - VLA Maraform -0.005SEC broad component comparable to CO -0.015-30 20 -10 -20 0 ARC SEC 12500.0 13000.0 13500 12000.0 $V_{Helio} (km s^{-1})$

Morganti et al. in prep

Where do we find HI outflows

From ULIRG.....

Mrk 231

Large mass outflow rate from CO (Feruglio et al. 2010) HI outflow (less massive ~10 M_{sun}/yr)

CO detection PdBI

0.005 Mrk231 WSRT 0.000 mm 000.0 Ark 231 - VL/ Muraform -0.005broad component comparable to CO -0.01513000.0 12000.0 12500.0 13500 $V_{Helio} (km s^{-1})$

Morganti et al. in prep

CO mass outflow rate ~13 M_{sun}/yr Alatalo et al. 2011, Nyland et al. 2014

What drives the HI outflows

Outflows can originate in different ways Nuclear winds, radiative feedback and mechanical feedback

- Radiation pressure can launch (wide) winds from the accretion disk
- Cold clumps of gas could be entrained and carried with the flow
- Coupling of AGN radiation to the dust in the wind

vinds from the accretion disk nd carried with the flow the wind

Wind from Accretion Disk around a Black Hole Illustration: NASA/CXC/M.Weiss)

What drives the HI outflows

Expanding radio plasma can also provide an efficient mechanism

Expansion of loosely collimated lobe/bubbles

- A variety of cases => including weak radio sources able to produce outflows

=> NGC1266 (Alatalo et al. 2011), Mrk231 (Rupke 2010, Morganti et al. 2011, in prep), NGC1433 (Combes et al. 2014)

=> showing the **general** relevance of jet/ISM interaction in creating outflows

- Jets/ISM direct interaction

- Possibility of having cold gas - even in the presence of strong interaction/shocks - has been shown for a number of objects.

X-ray colour, radio contours IGHT ASCENSION (J20

Location and distribution of the outflowing HI

Location and distribution of the gas essential for understanding what is going on -> exact location known for an handful of cases

The outflows in radio galaxies are often located hundred pc to kpc from the core and coincident with radio features

FarIR bright young radio source: 4C12.50 Morganti, Fogasy, Paragi et al. 2013, Science 341, 1082

Monday, 17 March 14

FarIR bright young radio source: 4C12.50 Morganti, Fogasy, Paragi et al. 2013, Science 341, 1082

	HI cloud outflo
lobal VLBI to image the HI	~1000 km/s
8 mas resolution, ~ 20pc	observed in abso

Monday, 17 March 14

A possible scenario

HI and molecular (and ionised) gas often co-existing → outflows truly multiphase

Gas cooling after a shock \rightarrow radio through a clumpy medium \rightarrow shocks accelerate/heat dense molecular clouds and molecules dissociated -> post-shock gas cools emitting emission lines (warm ionized gas) \rightarrow HI \rightarrow molecular lines

or

pre-existent cold gas being pushed aside/entrained (perhaps more likely in low radio power sources) \rightarrow e.g. case of Cen A?

1082 341, Science 2013, al. et Paragi Fogasy, anti, Morg

A possible scenario

HI and molecular (and ionised) gas often co-existing → outflows truly multiphase

Gas cooling after a shock \rightarrow radio through a clumpy medium \rightarrow shocks accelerate/heat dense molecular clouds and molecules dissociated -> post-shock gas cools emitting emission lines (warm ionized gas) \rightarrow HI \rightarrow molecular lines

or

pre-existent cold gas being pushed aside/entrained (perhaps more likely in low radio power sources) \rightarrow e.g. case of Cen A?

mass outflow rates: 1-80 M_{sun}/yr from HI, >100 from CO for some ULIRG, energetics: kinetic energy $10^{42 \div 43}$ erg/s \dot{E}_{kin}/L_{edd} = few x $10^{-4 \div -3}$

> Not consistent with the requirements from models of galaxy formation \rightarrow need for more realistic models (e.g. two-phase scenario)

What do we expect from the new radio telescopes

Larger samples Expand to lower radio fluxes Make use of stacking

What do we expect from the new radio telescopes

Larger samples

Expand to lower radio fluxes

Make use of stacking

Exploratory survey using the WSRT in preparation of Apertif; already with exciting results:

see presentation of K. Gereb

A newly found HI outflow from the WSRT shallow survey (Gereb et al. 2014)

- - observed more than 100 objects with SDSS redshifts
- down to 50 mJy [extension down to 30 mJy in progress (PI F. Maccagni) filling the WSRT schedule (more than 200 sources)!]
- stacking of absorption profiles

What do we expect from the new radio telescopes

Blind surveys -> Apertif, ASKAP

Explore higher redshift -> FLASH

Working on how to set up this part

Ready (almost) to piggyback on any Apertif survey

Summary

- Exciting results from the study of fast and massive outflows of COLD gas
- Similarities between HI and molecular gas found in many cases: HI intermediate step in the cooling of the outflowing gas? \rightarrow ALMA will be crucial for this topic
- Possibilities for studies of HI absorption and detection of HI and molecular outflows opened by the new telescopes (both pathfinders/precursors and SKA1) - down to weak radio sources (good prospect -> see Katinka's talk) and with blind surveys
- Outflows LIKELY even more relevant at higher redshift: important to extend the studies at low frequencies (see e.g. FLASH)
- Location and distribution of the gas important for the interpretation: high spatial resolution needed (and VLBI)

